Inclusion of variants discovered from diverse populations improves polygenic risk score transferability

被引:71
|
作者
Cavazos, Taylor B. [1 ]
Witte, John S. [1 ,2 ,3 ]
机构
[1] Univ Calif San Francisco, Biol & Med Informat, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94158 USA
[3] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94143 USA
来源
基金
美国国家科学基金会;
关键词
HUMAN DEMOGRAPHIC HISTORY; ASSOCIATION; METAANALYSIS; PREDICTION; LOCI;
D O I
10.1016/j.xhgg.2020.100017
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The majority of polygenic risk scores (PRSs) have been developed and optimized in individuals of European ancestry and may have limited generalizability across other ancestral populations. Understanding aspects of PRSs that contribute to this issue and determining solutions is complicated by disease-specific genetic architecture and limited knowledge of sharing of causal variants and effect sizes across populations. Motivated by these challenges, we undertook a simulation study to assess the relationship between ancestry and the potential bias in PRSs developed in European ancestry populations. Our simulations show that the magnitude of this bias increases with increasing divergence from European ancestry, and this is attributed to population differences in linkage disequilibrium and allele frequencies of European-discovered variants, likely as a result of genetic drift. Importantly, we find that including into the PRS variants discovered in African ancestry individuals has the potential to achieve unbiased estimates of genetic risk across global populations and admixed individuals. We confirm our simulation findings in an analysis of hemoglobin A1c (HbA1c), asthma, and prostate cancer in the UK Biobank. Given the demonstrated improvement in PRS prediction accuracy, recruiting larger diverse cohorts will be crucial-and potentially even necessary-for enabling accurate and equitable genetic risk prediction across populations.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A new method for multiancestry polygenic prediction improves performance across diverse populations
    Zhang H.
    Zhan J.
    Jin J.
    Zhang J.
    Lu W.
    Zhao R.
    Ahearn T.U.
    Yu Z.
    O’Connell J.
    Jiang Y.
    Chen T.
    Okuhara D.
    Aslibekyan S.
    Auton A.
    Babalola E.
    Bell R.K.
    Bielenberg J.
    Bryc K.
    Bullis E.
    Coker D.
    Partida G.C.
    Dhamija D.
    Das S.
    Elson S.L.
    Eriksson N.
    Filshtein T.
    Fitch A.
    Fletez-Brant K.
    Fontanillas P.
    Freyman W.
    Granka J.M.
    Heilbron K.
    Hernandez A.
    Hicks B.
    Hinds D.A.
    Jewett E.M.
    Kukar K.
    Kwong A.
    Lin K.-H.
    Llamas B.A.
    Lowe M.
    McCreight J.C.
    McIntyre M.H.
    Micheletti S.J.
    Moreno M.E.
    Nandakumar P.
    Nguyen D.T.
    Noblin E.S.
    Petrakovitz A.A.
    Poznik G.D.
    Nature Genetics, 2023, 55 (10) : 1757 - 1768
  • [22] Polygenic risk score calibration and association with breast cancer in diverse ancestries
    Kucera, Matthew
    Hughes, Elisha
    Mabey, Brent
    Hullinger, Brooke
    Pederson, Holly Jane
    Pal, Tuya
    Domchek, Susan M.
    Eng, Charis
    Garber, Judy Ellen
    Gordon, Ora
    Klemp, Jennifer R.
    Mukherjee, Semanti
    Vijai, Joseph
    Pruthi, Sandhya
    Kurian, Allison W.
    Whitworth, Pat W.
    Lanchbury, Jerry
    Slavin, Thomas Paul
    Gutin, Alexander
    Olopade, Olufunmilayo I.
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [23] Risk factors affecting polygenic score performance across diverse cohorts
    Hui, Daniel
    Dudek, Scott
    Kiryluk, Krzysztof
    Walunas, Theresa L.
    Kullo, Iftikhar J.
    Wei, Wei-Qi
    Tiwari, Hemant
    Peterson, Josh F.
    Chung, Wendy K.
    Davis, Brittney H.
    Khan, Atlas
    Kottyan, Leah C.
    Limdi, Nita A.
    Feng, Qiping
    Puckelwartz, Megan J.
    Weng, Chunhua
    Smith, Johanna L.
    Karlson, Elizabeth W.
    Jarvik, Gail P.
    Ritchie, Marylyn D.
    ELIFE, 2025, 12
  • [24] Polygenic Risk Score Improves Melanoma Risk Assessment in a Patient Cohort from the Veneto Region of Italy
    Pellegrini, Stefania
    Potjer, Thomas P.
    Del Bianco, Paola
    Vecchiato, Antonella
    Fabozzi, Alessio
    Piccin, Luisa
    Tonello, Debora
    van der Stoep, Nienke
    Tinsley, Emily
    Landi, Maria Teresa
    Iles, Mark M.
    Menin, Chiara
    BIOLOGY-BASEL, 2024, 13 (11):
  • [25] The contribution of functional HNF1A variants and polygenic susceptibility to risk of type 2 diabetes in ancestrally diverse populations
    Stalbow, Lauren A.
    Preuss, Michael H.
    Smit, Roelof A. J.
    Chami, Nathalie
    Bjorkhaug, Lise
    Aukrust, Ingvild
    Gloyn, Anna L.
    Loos, Ruth J. F.
    DIABETOLOGIA, 2023, 66 (01) : 116 - 126
  • [26] The contribution of functional HNF1A variants and polygenic susceptibility to risk of type 2 diabetes in ancestrally diverse populations
    Lauren A. Stalbow
    Michael H. Preuss
    Roelof A. J. Smit
    Nathalie Chami
    Lise Bjørkhaug
    Ingvild Aukrust
    Anna L. Gloyn
    Ruth J. F. Loos
    Diabetologia, 2023, 66 : 116 - 126
  • [27] Considerations for clinical implementation of polygenic risk scores in diverse US populations
    Lennon, Niall
    Kenny, Eimear
    NATURE MEDICINE, 2024, 30 (2) : 354 - 355
  • [28] Multiethnic polygenic risk prediction in diverse populations through transfer learning
    Tian, Peixin
    Chan, Tsai Hor
    Wang, Yong-Fei
    Yang, Wanling
    Yin, Guosheng
    Zhang, Yan Dora
    FRONTIERS IN GENETICS, 2022, 13
  • [29] GENERALIZABILITY OF POLYGENIC RISK SCORES WITHIN AND ACROSS DIVERSE AFRICAN POPULATIONS
    Majara, Lerato
    Kalungi, Allan
    Koen, Nastassja
    Zar, Heather
    Stein, Dan
    Martin, Alicia
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S24 - S24
  • [30] Multiethnic Polygenic Risk Prediction in Diverse Populations through Transfer Learning
    Tian, Peixin
    Chan, Tsai H.
    Wang, Yong-Fei
    Yang, Wanling
    Yin, Guosheng
    Zhang, Yan D.
    GENETIC EPIDEMIOLOGY, 2022, 46 (07) : 538 - 538