Graphical Inference for Infovis

被引:76
|
作者
Wickham, Hadley [1 ]
Cook, Dianne [2 ]
Hofmann, Heike [2 ]
Buja, Andreas [3 ]
机构
[1] Rice Univ, Houston, TX 77251 USA
[2] Iowa State Univ, Ames, IA 50011 USA
[3] Univ Penn, Wharton Sch, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Statistics; visual testing; permutation tests; null hypotheses; data plots;
D O I
10.1109/TVCG.2010.161
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
How do we know if what we see is really there? When visualizing data, how do we avoid falling into the trap of apophenia where we see patterns in random noise? Traditionally, infovis has been concerned with discovering new relationships, and statistics with preventing spurious relationships from being reported. We pull these opposing poles closer with two new techniques for rigorous statistical inference of visual discoveries. The "Rorschach" helps the analyst calibrate their understanding of uncertainty and the "line-up" provides a protocol for assessing the significance of visual discoveries, protecting against the discovery of spurious structure.
引用
收藏
页码:973 / 979
页数:7
相关论文
共 50 条
  • [31] An inference mechanism for graphical knowledge base representation
    El Helly, M
    Bahgat, R
    Rafea, A
    4TH WORLD CONGRESS OF EXPERT SYSTEMS, VOL 1 AND 2: APPLICATION OF ADVANCED INFORMATION TECHNOLOGIES, 1998, : 613 - 620
  • [32] Simulation of graphical models for multiagent probabilistic inference
    Xiang, Y
    An, X
    Cercone, N
    SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2003, 79 (10): : 545 - 567
  • [33] Directed Adaptive Graphical Lasso for causality inference
    Ren, Zhiquan
    Yang, Yang
    Bao, Feng
    Deng, Yue
    Dai, Qionghai
    NEUROCOMPUTING, 2016, 173 : 1989 - 1994
  • [34] Bayesian inference for graphical factor analysis models
    Paolo Giudici
    Elena Stanghellini
    Psychometrika, 2001, 66 : 577 - 591
  • [35] Optimal control as a graphical model inference problem
    Kappen, Hilbert J.
    Gomez, Vicenc
    Opper, Manfred
    MACHINE LEARNING, 2012, 87 (02) : 159 - 182
  • [36] Bayesian Inference of Multiple Gaussian Graphical Models
    Peterson, Christine
    Stingo, Francesco C.
    Vannucci, Marina
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (509) : 159 - 174
  • [37] A layout inference algorithm for Graphical User Interfaces
    Sanchez Ramon, Oscar
    Sanchez Cuadrado, Jesus
    Garcia Molina, Jesus
    Vanderdonckt, Jean
    INFORMATION AND SOFTWARE TECHNOLOGY, 2016, 70 : 155 - 175
  • [38] Graphical models for diagnosis knowledge representation and inference
    Luo, Jianhui
    Tu, Haiying
    Pattipati, Krishna
    Qiao, Liu
    Chigusa, Shunsuke
    AUTOTESTCON 2005, 2005, : 483 - 489
  • [39] Graphical model inference with external network data
    Jewson, Jack
    Li, Li
    Battaglia, Laura
    Hansen, Stephen
    Rossell, David
    Zwiernik, Piotr
    Biometrics, 2024, 80 (04)
  • [40] Heterogeneity adjustment with applications to graphical model inference
    Fan, Jianqing
    Liu, Han
    Wang, Weichen
    Zhu, Ziwei
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 3908 - 3952