Optimal control as a graphical model inference problem

被引:171
|
作者
Kappen, Hilbert J. [1 ]
Gomez, Vicenc [1 ]
Opper, Manfred [2 ]
机构
[1] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, NL-6525 EZ Nijmegen, Netherlands
[2] TU Berlin, Dept Comp Sci, D-10587 Berlin, Germany
关键词
Optimal control; Uncontrolled dynamics; Kullback-Leibler divergence; Graphical model; Approximate inference; Cluster variation method; Belief propagation;
D O I
10.1007/s10994-012-5278-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We reformulate a class of non-linear stochastic optimal control problems introduced by Todorov (in Advances in Neural Information Processing Systems, vol. 19, pp. 1369-1376, 2007) as a Kullback-Leibler (KL) minimization problem. As a result, the optimal control computation reduces to an inference computation and approximate inference methods can be applied to efficiently compute approximate optimal controls. We show how this KL control theory contains the path integral control method as a special case. We provide an example of a block stacking task and a multi-agent cooperative game where we demonstrate how approximate inference can be successfully applied to instances that are too complex for exact computation. We discuss the relation of the KL control approach to other inference approaches to control.
引用
收藏
页码:159 / 182
页数:24
相关论文
共 50 条
  • [1] Optimal control as a graphical model inference problem
    Hilbert J. Kappen
    Vicenç Gómez
    Manfred Opper
    Machine Learning, 2012, 87 : 159 - 182
  • [2] Graphical model inference in optimal control of stochastic multi-agent systems
    van den Broek, Bart
    Wiegerinck, Wim
    Kappen, Bert
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2008, 32 : 95 - 122
  • [3] Equivalence model: a new graphical model for causal inference
    Poorolajal, Jalal
    EPIDEMIOLOGY AND HEALTH, 2020, 42
  • [4] INFERENCE OF TIME SERIES CHAIN GRAPHICAL MODEL
    Farnoudkia, Hajar
    Purutcuoglu, Vilda
    JOURNAL OF DYNAMICS AND GAMES, 2025, 12 (02): : 183 - 195
  • [5] Graphical model inference with external network data
    Jewson, Jack
    Li, Li
    Battaglia, Laura
    Hansen, Stephen
    Rossell, David
    Zwiernik, Piotr
    Biometrics, 2024, 80 (04)
  • [6] Heterogeneity adjustment with applications to graphical model inference
    Fan, Jianqing
    Liu, Han
    Wang, Weichen
    Zhu, Ziwei
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 3908 - 3952
  • [7] Graphical Model Inference with Erosely Measured Data
    Zheng, Lili
    Allen, Genevera I.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (547) : 2282 - 2293
  • [8] Bounds on the number of inference functions of a graphical model
    Elizalde, Sergi
    Woods, Kevin
    STATISTICA SINICA, 2007, 17 (04) : 1395 - 1415
  • [9] An optimal control problem for a spatiotemporal SIR model
    El-Alami Laaroussi A.
    Rachik M.
    Elhia M.
    International Journal of Dynamics and Control, 2018, 6 (1) : 384 - 397
  • [10] Optimal Control Problem for an Electoral Behavior Model
    Balatif, Omar
    El Hia, Mohamed
    Rachik, Mostafa
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2023, 31 (01) : 233 - 250