Optimal control as a graphical model inference problem

被引:171
|
作者
Kappen, Hilbert J. [1 ]
Gomez, Vicenc [1 ]
Opper, Manfred [2 ]
机构
[1] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, NL-6525 EZ Nijmegen, Netherlands
[2] TU Berlin, Dept Comp Sci, D-10587 Berlin, Germany
关键词
Optimal control; Uncontrolled dynamics; Kullback-Leibler divergence; Graphical model; Approximate inference; Cluster variation method; Belief propagation;
D O I
10.1007/s10994-012-5278-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We reformulate a class of non-linear stochastic optimal control problems introduced by Todorov (in Advances in Neural Information Processing Systems, vol. 19, pp. 1369-1376, 2007) as a Kullback-Leibler (KL) minimization problem. As a result, the optimal control computation reduces to an inference computation and approximate inference methods can be applied to efficiently compute approximate optimal controls. We show how this KL control theory contains the path integral control method as a special case. We provide an example of a block stacking task and a multi-agent cooperative game where we demonstrate how approximate inference can be successfully applied to instances that are too complex for exact computation. We discuss the relation of the KL control approach to other inference approaches to control.
引用
收藏
页码:159 / 182
页数:24
相关论文
共 50 条
  • [31] A PROBLEM OF OPTIMAL CONTROL
    DEBRUIJN, NG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1966, 14 (02) : 185 - &
  • [32] On an optimal control problem
    Yildiz, B
    Yagubov, G
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 88 (02) : 275 - 287
  • [33] Different types of Bernstein operators in inference of Gaussian graphical model
    Agraz, Melih
    Purutcuoglu, Vilda
    COGENT MATHEMATICS, 2016, 3
  • [34] Parallel probabilistic graphical model approach for nonparametric Bayesian inference
    Lee, Wonjung
    Zabaras, Nicholas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 372 : 546 - 563
  • [35] Graphical-model based estimation and inference for differential privacy
    McKenna, Ryan
    Sheldon, Daniel
    Miklau, Gerome
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [36] Boundary optimal control problem of complex heat transfer model
    Grenkin, Gleb V.
    Chebotarev, Alexander Yu.
    Kovtanyuk, Andrey E.
    Botkin, Nikolai D.
    Hoffmann, Karl-Heinz
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (02) : 1243 - 1260
  • [37] Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology
    Ainseba, Bedr'Eddine
    Bendahmane, Mostafa
    Ruiz-Baier, Ricardo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) : 231 - 247
  • [38] A fractional optimal control model for a simple cash balance problem
    Chen, Yi
    Lv, Zhanmei
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 120
  • [39] An Optimal Control Problem for HTLV-I Infection Model
    Khajanchi, Subhas
    Bera, Sovan
    Kar, Tapan Kumar
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2025, 46 (02): : 798 - 810
  • [40] Optimal Feedback Control Problem for the Fractional Voigt-α Model
    Zvyagin, Victor
    Zvyagin, Andrey
    Ustiuzhaninova, Anastasiia
    MATHEMATICS, 2020, 8 (07)