Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology

被引:11
|
作者
Ainseba, Bedr'Eddine [2 ]
Bendahmane, Mostafa [2 ]
Ruiz-Baier, Ricardo [1 ]
机构
[1] Ecole Polytech Fed Lausanne, MATHICSE, CH-1015 Lausanne, Switzerland
[2] Univ Bordeaux 2, CNRS, UMR 5251, Inst Math Bordeaux, F-33076 Bordeaux, France
基金
欧洲研究理事会;
关键词
Optimal control; Finite volume approximation; Convergence; Cardiac electrophysiology; Tridomain model; REACTION-DIFFUSION SYSTEMS; FINITE-VOLUME SCHEME; BIDOMAIN MODEL; APPROXIMATION; CONVERGENCE;
D O I
10.1016/j.jmaa.2011.11.069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, an optimal control problem constrained by the tridomain equations in electrocardiology is investigated. The state equations consisting in a coupled reaction-diffusion system modeling the propagation of the intracellular and extracellular electrical potentials, and ionic currents, are extended to further consider the effect of an external bathing medium. The existence and uniqueness of solution for the tridomain problem and the related control problem is assessed, and the primal and dual problems are discretized using a finite volume method which is proved to converge to the corresponding weak solution. In order to illustrate the control of the electrophysiological dynamics, we present some preliminary numerical experiments using an efficient implementation of the proposed scheme. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:231 / 247
页数:17
相关论文
共 50 条
  • [1] Time optimal control of the monodomain model in cardiac electrophysiology
    Kunisch, Karl
    Rund, Armin
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (06) : 1664 - 1683
  • [2] SECOND ORDER NUMERICAL SOLUTION FOR OPTIMAL CONTROL OF MONODOMAIN MODEL IN CARDIAC ELECTROPHYSIOLOGY
    Nagaiah, Chamakuri
    Kunisch, Karl
    Plank, Gernot
    ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING, 2009, : 202 - 211
  • [3] A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology
    Kunisch, Karl
    Nagaiah, Chamakuri
    Wagner, Marcus
    COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (06) : 257 - 269
  • [4] Robust control problem of uncertain bidomain models in cardiac electrophysiology
    Belmiloudi, Aziz
    JOURNAL OF COUPLED SYSTEMS AND MULTISCALE DYNAMICS, 2013, 1 (03) : 332 - 350
  • [5] Moreau-Yosida regularization to optimal control of the monodomain model with pointwise control and state constraints in cardiac electrophysiology
    Robert, Maria
    Nadupuri, Suresh Kumar
    Chamakuri, Nagaiah
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 457
  • [6] A depth-averaged heart model for the inverse problem of cardiac electrophysiology
    Lagracie, Emma
    Bourgault, Yves
    Coudiere, Yves
    Weynans, Lisl
    INVERSE PROBLEMS, 2025, 41 (02)
  • [7] Analysis of the Optimal Relaxed Control to an Optimal Control Problem
    Hongwei Lou
    Applied Mathematics and Optimization, 2009, 59
  • [8] Analysis of the Optimal Relaxed Control to an Optimal Control Problem
    Lou, Hongwei
    APPLIED MATHEMATICS AND OPTIMIZATION, 2009, 59 (01): : 75 - 97
  • [9] LASER APPLICATION TO A PROBLEM OF CARDIAC ELECTROPHYSIOLOGY
    DELEZE, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1965, 16 (01): : 182 - &
  • [10] On an inverse problem with applications in cardiac electrophysiology
    Aspri, Andrea
    Beretta, Elena
    Francini, Elisa
    Pierotti, Dario
    Vessella, Sergio
    NONLINEARITY, 2025, 38 (04)