Interpretable machine learning prediction of all-cause mortality

被引:28
|
作者
Qiu, Wei [1 ]
Chen, Hugh [1 ]
Dincer, Ayse Berceste [1 ]
Lundberg, Scott [2 ]
Kaeberlein, Matt [3 ]
Lee, Su-In [1 ]
机构
[1] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
[2] Microsoft Res, Redmond, WA USA
[3] Univ Washington, Dept Lab Med & Pathol, Seattle, WA USA
来源
COMMUNICATIONS MEDICINE | 2022年 / 2卷 / 01期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
CELL DISTRIBUTION WIDTH; BODY-MASS INDEX; SERUM POTASSIUM LEVELS; 2ND NATIONAL-HEALTH; BLOOD LEAD LEVELS; FAT-FREE MASS; FOLLOW-UP; CARDIOVASCULAR-DISEASE; CALF CIRCUMFERENCE; RISK;
D O I
10.1038/s43856-022-00180-x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background Unlike linear models which are traditionally used to study all-cause mortality, complex machine learning models can capture non-linear interrelations and provide opportunities to identify unexplored risk factors. Explainable artificial intelligence can improve prediction accuracy over linear models and reveal great insights into outcomes like mortality. This paper comprehensively analyzes all-cause mortality by explaining complex machine learning models. Methods We propose the IMPACT framework that uses XAI technique to explain a state-of-the-art tree ensemble mortality prediction model. We apply IMPACT to understand all-cause mortality for 1-, 3-, 5-, and 10-year follow-up times within the NHANES dataset, which contains 47,261 samples and 151 features. Results We show that IMPACT models achieve higher accuracy than linear models and neural networks. Using IMPACT, we identify several overlooked risk factors and interaction effects. Furthermore, we identify relationships between laboratory features and mortality that may suggest adjusting established reference intervals. Finally, we develop highly accurate, efficient and interpretable mortality risk scores that can be used by medical professionals and individuals without medical expertise. We ensure generalizability by performing temporal validation of the mortality risk scores and external validation of important findings with the UK Biobank dataset. Conclusions IMPACT's unique strength is the explainable prediction, which provides insights into the complex, non-linear relationships between mortality and features, while maintaining high accuracy. Our explainable risk scores could help individuals improve self-awareness of their health status and help clinicians identify patients with high risk. IMPACT takes a consequential step towards bringing contemporary developments in XAI to epidemiology.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Application of Machine Learning in Predicting All-Cause Mortality in Patients With Left Ventricular Assist Device
    Truong, Vien T.
    Nguyen, Binh
    Wang, Alex Xing X.
    Dai, Phan
    Patel, Vivek
    Ahmad, Mansoor
    Siddique, Muhammad Saad
    Usama, Syed Muhammad
    Mondal, Avilash
    Quach, Kevin
    Agrawal, Durgesh
    Shah, Syed Fahad
    Skenderi, Sonela
    Metkus, Thomas
    Dhar, Sunil
    Chung, Eugene
    [J]. CIRCULATION, 2023, 148
  • [32] Alcohol and all-cause mortality
    Rehm, J
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 1996, 25 (01) : 215 - 216
  • [33] Cefepime and All-Cause Mortality
    Paul, Mical
    Yahav, Dafna
    Fraser, Abigail
    Leibovici, Leonard
    [J]. CLINICAL INFECTIOUS DISEASES, 2009, 49 (04) : 640 - 641
  • [34] All-cause mortality in RA
    Wasko, Mary Chester
    Hubert, Helen
    Lingala, Bharathi
    Osial, Thadddeus, Jr.
    Starz, Terrence
    Luggen, Michael
    Fries, James
    [J]. ARTHRITIS AND RHEUMATISM, 2008, 58 (09): : S276 - S276
  • [35] BMI and all-cause mortality
    Kang, Seema
    [J]. LANCET DIABETES & ENDOCRINOLOGY, 2016, 4 (09): : 736 - 736
  • [36] Heart Rate Variability (HRV) Based Interpretable Machine Learning Algorithm for Prediction of All-cause Acute Respiratory Failure (ARF) Among ICU Patients
    Krishnan, P.
    Marshall, C.
    Narendrula, S.
    Vale, J. G. De Souza
    Song, J.
    Yang, P.
    Wang, J.
    Bhavani, S.
    Holder, A. L.
    Esper, A. M.
    Kamaleswaran, R.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [37] A Machine Learning Algorithm using Clinical and Demographic Data for All-Cause Preterm Birth Prediction
    Bitar, Ghamar
    Liu, Wei
    Tunguhan, Jade
    Kumar, Kaveeta V.
    Hoffman, Matthew K.
    [J]. AMERICAN JOURNAL OF PERINATOLOGY, 2024, 41 : e3115 - e3123
  • [38] PREDICTION OF ALL-CAUSE MORTALITY FOLLOWING PERCUTANEOUS CORONARY INTERVENTION IN BIFURCATION LESIONS USING MACHINE LEARNING ALGORITHMS - THE RAIN-ML PREDICTION MODEL
    Gallone, G.
    Burrello, J.
    Burrello, A.
    Iannaccone, M.
    De Luca, L.
    Patti, G.
    Cerrato, E.
    Venuti, G.
    De Filippo, O.
    Mattesini, A.
    Muscoli, S.
    Trabattoni, D.
    Giammaria, M.
    Truffa, A.
    Cortese, B.
    Conrotto, F.
    Mulatero, P.
    Monticone, S.
    Escaned, J.
    Usmiani, T.
    D'ascenzo, F.
    De Ferrari, G.
    Breviario, S.
    [J]. EUROPEAN HEART JOURNAL SUPPLEMENTS, 2022, 24 (SUPPL C)
  • [39] Prediction of premature all-cause mortality: A prospective general population cohort study comparing machine-learning and standard epidemiological approaches
    Weng, Stephen F.
    Vaz, Luis
    Qureshi, Nadeem
    Kai, Joe
    [J]. PLOS ONE, 2019, 14 (03):
  • [40] Utilizing electronic health data and machine learning for the prediction of 30-day unplanned readmission or all-cause mortality in heart failure
    Beecy, Ashley N.
    Gummalla, Manasa
    Sholle, Evan
    Xu, Zhuoran
    Zhang, Yiye
    Michalak, Kelly
    Dolan, Kristina
    Hussain, Yasin
    Lee, Benjamin C.
    Zhang, Yongkang
    Goyal, Parag
    Campion, Thomas R., Jr.
    Shaw, Leslee J.
    Baskaran, Lohendran
    Al'Aref, Subhi J.
    [J]. CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2020, 1 (02): : 71 - 79