Interpretable machine learning prediction of all-cause mortality

被引:28
|
作者
Qiu, Wei [1 ]
Chen, Hugh [1 ]
Dincer, Ayse Berceste [1 ]
Lundberg, Scott [2 ]
Kaeberlein, Matt [3 ]
Lee, Su-In [1 ]
机构
[1] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
[2] Microsoft Res, Redmond, WA USA
[3] Univ Washington, Dept Lab Med & Pathol, Seattle, WA USA
来源
COMMUNICATIONS MEDICINE | 2022年 / 2卷 / 01期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
CELL DISTRIBUTION WIDTH; BODY-MASS INDEX; SERUM POTASSIUM LEVELS; 2ND NATIONAL-HEALTH; BLOOD LEAD LEVELS; FAT-FREE MASS; FOLLOW-UP; CARDIOVASCULAR-DISEASE; CALF CIRCUMFERENCE; RISK;
D O I
10.1038/s43856-022-00180-x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background Unlike linear models which are traditionally used to study all-cause mortality, complex machine learning models can capture non-linear interrelations and provide opportunities to identify unexplored risk factors. Explainable artificial intelligence can improve prediction accuracy over linear models and reveal great insights into outcomes like mortality. This paper comprehensively analyzes all-cause mortality by explaining complex machine learning models. Methods We propose the IMPACT framework that uses XAI technique to explain a state-of-the-art tree ensemble mortality prediction model. We apply IMPACT to understand all-cause mortality for 1-, 3-, 5-, and 10-year follow-up times within the NHANES dataset, which contains 47,261 samples and 151 features. Results We show that IMPACT models achieve higher accuracy than linear models and neural networks. Using IMPACT, we identify several overlooked risk factors and interaction effects. Furthermore, we identify relationships between laboratory features and mortality that may suggest adjusting established reference intervals. Finally, we develop highly accurate, efficient and interpretable mortality risk scores that can be used by medical professionals and individuals without medical expertise. We ensure generalizability by performing temporal validation of the mortality risk scores and external validation of important findings with the UK Biobank dataset. Conclusions IMPACT's unique strength is the explainable prediction, which provides insights into the complex, non-linear relationships between mortality and features, while maintaining high accuracy. Our explainable risk scores could help individuals improve self-awareness of their health status and help clinicians identify patients with high risk. IMPACT takes a consequential step towards bringing contemporary developments in XAI to epidemiology.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Machine Learning and Prediction of All-Cause Mortality in COPD (vol 158, pg 952, 2020)
    Moll, Matthew
    Qiao, Dandi
    Regan, Elizabeth A.
    Hunninghake, Gary M.
    Make, Barry J.
    Tal-Singer, Ruth
    McGeachie, Michael J.
    Castaldi, Peter J.
    Estepar, Raul San Jose
    Washko, George R.
    Wells, James M.
    LaFon, David
    Strand, Matthew
    Bowler, Russell P.
    Han, MeiLan K.
    Vestbo, Jorgen
    Celli, Bartolome
    Calverley, Peter
    Crapo, James
    Silverman, Edwin K.
    Hobbs, Brian D.
    Cho, Michael H.
    [J]. CHEST, 2021, 159 (05) : 2123 - 2128
  • [12] PREDICTORS OF ALL-CAUSE MORTALITY IN THE SPRINT TRIAL IDENTIFIED BY MACHINE LEARNING
    Gani, Nuha
    Dey, Amit
    Xin, Victoria
    Wang, Runqiu
    Shalhoub, Ruba
    Wu, Colin
    Xin, Tian
    Almario, Eileen Navarro
    Patel, Tejas
    Fleg, Jerome
    Kettermann, Anna
    Csako, Gyorgy
    Sopko, George
    Sviglin, Helena
    Cooper, Lawton
    Hoque, Laboni
    Dandi, Gauri
    Chowdhury, Iffat
    Burkhart, Keith
    Calis, Karim
    Szarfman, Ana
    Mehta, Nehal
    Pucino, Frank
    Rosenberg, Yves
    Hasan, Ahmed
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (09) : 1891 - 1891
  • [13] Prediction of all-cause mortality for chronic kidney disease patients using four models of machine learning
    Tran, Nu Thuy Dung
    Balezeaux, Margaux
    Granal, Maelys
    Fouque, Denis
    Ducher, Michel
    Fauvel, Jean-Pierre
    [J]. NEPHROLOGY DIALYSIS TRANSPLANTATION, 2023, 38 (07) : 1691 - 1699
  • [14] Multicenter validation of a machine-learning algorithm for 48-h all-cause mortality prediction
    Mohamadlou, Hamid
    Panchavati, Saarang
    Calvert, Jacob
    Lynn-Palevsky, Anna
    Le, Sidney
    Allen, Angier
    Pellegrini, Emily
    Green-Saxena, Abigail
    Barton, Christopher
    Fletcher, Grant
    Shieh, Lisa
    Stark, Philip B.
    Chettipally, Uli
    Shimabukuro, David
    Feldman, Mitchell
    Das, Ritankar
    [J]. HEALTH INFORMATICS JOURNAL, 2020, 26 (03) : 1912 - 1925
  • [15] Machine Learning-Based Model for Prediction of All-Cause Mortality in Low Ejection Function Patients
    Sakashita, Yuji
    Kawamura, Ai
    Kashiyama, Noriyuki
    Kawamura, Takuji
    Yoshioka, Daisuke
    Toda, Koichi
    Miyagawa, Shigeru
    [J]. CIRCULATION, 2021, 144
  • [16] Prediction of All-Cause Mortality in Diabetic Patients
    Di Castelnuovo, Augusto Filippo
    Costanzo, Simona
    Bonaccio, Marialaura
    de Curtis, Amalia
    Persichillo, Mariarosaria
    Cerletti, Chiara
    Donati, Maria Benedetta
    de Gaetano, Giovanni
    Iacoviello, Licia
    [J]. CIRCULATION, 2019, 139
  • [17] Stress hyperglycemia ratio and machine learning model for prediction of all-cause mortality in patients undergoing cardiac surgery
    Yingjian Pei
    Yajun Ma
    Ying Xiang
    Guitao Zhang
    Yao Feng
    Wenbo Li
    Yinghua Zhou
    Shujuan Li
    [J]. Cardiovascular Diabetology, 24 (1)
  • [18] Prediction of All-Cause Mortality Following Percutaneous Coronary Intervention in Bifurcation Lesions Using Machine Learning Algorithms
    Burrello, Jacopo
    Gallone, Guglielmo
    Burrello, Alessio
    Pagliari, Daniele Jahier
    Ploumen, Eline H.
    Iannaccone, Mario
    De Luca, Leonardo
    Zocca, Paolo
    Patti, Giuseppe
    Cerrato, Enrico
    Wojakowski, Wojciech
    Venuti, Giuseppe
    De Filippo, Ovidio
    Mattesini, Alessio
    Ryan, Nicola
    Helft, Gerard
    Muscoli, Saverio
    Kan, Jing
    Sheiban, Imad
    Parma, Radoslaw
    Trabattoni, Daniela
    Giammaria, Massimo
    Truffa, Alessandra
    Piroli, Francesco
    Imori, Yoichi
    Cortese, Bernardo
    Omede, Pierluigi
    Conrotto, Federico
    Chen, Shao-Liang
    Escaned, Javier
    Buiten, Rosaly A.
    Von Birgelen, Clemens
    Mulatero, Paolo
    De Ferrari, Gaetano Maria
    Monticone, Silvia
    D'Ascenzo, Fabrizio
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (06):
  • [19] Prediction of all-cause mortality in coronary artery disease patients with atrial fibrillation based on machine learning models
    Xinyun Liu
    Jicheng Jiang
    Lili Wei
    Wenlu Xing
    Hailong Shang
    Guangan Liu
    Feng Liu
    [J]. BMC Cardiovascular Disorders, 21
  • [20] Prediction of all-cause mortality in coronary artery disease patients with atrial fibrillation based on machine learning models
    Liu, Xinyun
    Jiang, Jicheng
    Wei, Lili
    Xing, Wenlu
    Shang, Hailong
    Liu, Guangan
    Liu, Feng
    [J]. BMC CARDIOVASCULAR DISORDERS, 2021, 21 (01)