Robust equivariant non parametric regression estimators for functional ergodic data

被引:1
|
作者
Almanjahie, Ibrahim [1 ]
Attouch, Mohammed Kadi [1 ,2 ]
Kaid, Zoulikha [1 ]
Louhab, Hayat [2 ]
机构
[1] King Khalid Univ, Coll Sci, Dept Math, POB 9004, Abha, Saudi Arabia
[2] Univ Djillali Liabes Sidi Bel Abbes, Lab Probabilites Stat Proc Stochast, Sidi Bel Abbes, Algeria
关键词
Functional data; ergodic data; scale parameter; kernel estimate; almost complete convergence; entropy; NONPARAMETRIC-ESTIMATION;
D O I
10.1080/03610926.2019.1705980
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article deals with the equivariant non parametric robust regression estimation for stationary ergodic processes valued in where is a semi-metric space. We consider a new robust regression estimator when the scale parameter is unknown. The principal aim is to prove the almost complete convergence (with rate) for the proposed estimator. Unlike in standard multivariate cases, the gap between pointwise and uniform results is not immediate. So, suitable topological considerations are needed, implying changes in the rates of convergence which are quantified by entropy considerations.
引用
收藏
页码:3505 / 3521
页数:17
相关论文
共 50 条