Biopolymer folding driven nanoparticle reorganization in bio-nanocomposites

被引:17
|
作者
Carn, Florent [1 ]
Boue, Francois [2 ]
Djabourov, Madeleine [3 ]
Steunou, Nathalie [4 ]
Coradin, Thibaud [5 ]
Livage, Jacques [5 ]
Floquet, Sebastien [4 ]
Cadot, Emmanuel [4 ]
Buhler, Eric [1 ]
机构
[1] Univ Paris Diderot, Lab Mat & Syst Complexes MSC, CNRS, UMR 7057, F-75013 Paris, France
[2] CE Saclay, Lab Leon Brillouin, UMR CNRS CEA IRAMIS 12, F-91191 Gif Sur Yvette, France
[3] ESPCI, Lab Phys Therm, F-75005 Paris, France
[4] Univ Versailles St Quentin Yvelines, Inst Lavoisier Versailles, UMR CNRS 8180, F-78035 Versailles, France
[5] UPMC Univ Paris 06, CNRS, Coll France, F-75005 Paris, France
关键词
ANGLE NEUTRON-SCATTERING; DYNAMIC LIGHT-SCATTERING; TRIPLE-HELIX FORMATION; AQUEOUS-SOLUTIONS; COLLOIDAL SILICA; COMPLEX COACERVATION; GELATIN SOLUTIONS; PHASE-SEPARATION; SOFT MATTER; POLYELECTROLYTE;
D O I
10.1039/c2sm06666a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper we report the influence of biopolymer folding on nanoparticle spatial distribution in two typical bio-nanocomposite hydrogels. These systems consist of negatively charged nanosized fillers (polyoxotungstate clusters and silica particles, 2.2 nm and 23.0 nm in diameter, respectively) dispersed at low volume fractions in a positively charged gelatin hydrogel. The filler state of dispersion is investigated during triple helix folding by combining small-angle neutron scattering (SANS) and polarimetry experiments. Neutron contrast matching/polarimetry correlations indicate that the nanoparticle spatial distribution is clearly modified during triple helix folding for the two systems. In the first case, polyoxotungstate clusters are initially arranged in small finite size aggregates that grow with increasing triple helix rate: Delta R-G approximate to +150% and Delta I(q -> 0) approximate to +250% for Delta[helix] approximate to +40%. In the second case, silica particles initially form a connected network that undergoes a significant densification through gelatin conformational transition. In the two cases, the kinetics of triple helix folding is only slightly affected by the presence of the nanoparticles and their state of dispersion. In our experimental conditions, these two processes are almost thermo-reversible following triple helix unfolding.
引用
收藏
页码:2930 / 2944
页数:15
相关论文
共 50 条
  • [21] Stiffening mechanisms in vermiculite-amorphous polyamide bio-nanocomposites
    Macheca, Afonso D.
    Focke, Walter W.
    Muiambo, Herminio F.
    Kaci, Mustapha
    [J]. EUROPEAN POLYMER JOURNAL, 2016, 74 : 51 - 63
  • [22] Bio-nanocomposites based on iron oxides: Preparation and catalytic applications
    Balu, Alina
    Padron, D. R.
    Romero, Antonio
    Luque, Rafael
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [23] Graphene Oxide Reinforced Chitosan/Polyvinylpyrrolidone Polymer Bio-Nanocomposites
    El Achaby, Mounir
    Essamlali, Youness
    El Miri, Nassima
    Snik, Asmae
    Abdelouahdi, Karima
    Fihri, Aziz
    Zahouily, Mohamed
    Solhy, Abderrahim
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (22)
  • [24] Mechanical milling as a technology to produce structural and functional bio-nanocomposites
    Gorrasi, Giuliana
    Sorrentino, Andrea
    [J]. GREEN CHEMISTRY, 2015, 17 (05) : 2610 - 2625
  • [25] Morphological and physical properties of DNA/graphene layered bio-nanocomposites
    Bai, Zongwu
    Dang, Thuy D.
    Kim, Sang N.
    Rao, Rahul
    Naik, Rajesh R.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [26] A review on nanomaterials and nanohybrids based bio-nanocomposites for food packaging
    Perera, Kalpani Y.
    Jaiswal, Swarna
    Jaiswal, Amit K.
    [J]. FOOD CHEMISTRY, 2022, 376
  • [27] Physiologically Responsive, Mechanically Adaptive Bio-Nanocomposites for Biomedical Applications
    Jorfi, Mehdi
    Roberts, Matthew N.
    Foster, E. Johan
    Weder, Christoph
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (04) : 1517 - 1526
  • [28] Synthesis of chitin-bentonite clay based polyurethane bio-nanocomposites
    Zuber, Mohammad
    Zia, Khalid Mahmood
    Mahboob, Shahid
    Hassan, Muhammad
    Bhatti, Ijaz Ahmad
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2010, 47 (02) : 196 - 200
  • [29] Green Synthesis of Chitosan Bio-Nanocomposites and Investigation of their Antimicrobial and Antitumor Effects
    El-Sheshtawy, H. S.
    Hefni, H. H. H.
    Aboutaleb, Wael A.
    Elaasser, M. M.
    Mady, M. F.
    El-Shiekh, H. H.
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (04): : 1247 - 1261
  • [30] Water Diffusion Mechanisms in New Bio-Nanocomposites Based on Polyhydroxyalkanoates/Nanoclays
    Cretois, Raphael
    Follain, Nadege
    Soulestin, Jeremie
    Dargent, Eric
    Lebrun, Laurent
    Marais, Stephane
    [J]. MULTI-FUNCTIONAL MATERIALS AND STRUCTURES IV, 2013, 747 : 682 - +