Learning Graphons via Structured Gromov-Wasserstein Barycenters

被引:0
|
作者
Xu, Hongteng [1 ,2 ]
Luo, Dixin [3 ]
Carin, Lawrence [4 ]
Zha, Hongyuan [5 ]
机构
[1] Renmin Univ China, Gaoling Sch Artificial Intelligence, Beijing, Peoples R China
[2] Beijing Key Lab Big Data Management & Anal Method, Beijing, Peoples R China
[3] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing, Peoples R China
[4] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[5] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen Res Inst Big Data, Shenzhen, Peoples R China
关键词
MATRICES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel and principled method to learn a non-parametric graph model called graphon, which is defined in an infinite-dimensional space and represents arbitrary-size graphs. Based on the weak regularity lemma from the theory of graphons, we leverage a step function to approximate a graphon. We show that the cut distance of graphons can be relaxed to the Gromov-Wasserstein distance of their step functions. Accordingly, given a set of graphs generated by an underlying graphon, we learn the corresponding step function as the Gromov-Wasserstein barycenter of the given graphs. Furthermore, we develop several enhancements and extensions of the basic algorithm, e:g:, the smoothed Gromov-Wasserstein barycenter for guaranteeing the continuity of the learned graphons and the mixed Gromov-Wasserstein barycenters for learning multiple structured graphons. The proposed approach overcomes drawbacks of prior state-of-the-art methods, and outperforms them on both synthetic and real-world data. The code is available at https://github.com/HongtengXu/SGWB-Graphon.
引用
收藏
页码:10505 / 10513
页数:9
相关论文
共 50 条
  • [31] Privacy-Preserved Evolutionary Graph Modeling via Gromov-Wasserstein Autoregression
    Xiang, Yue
    Luo, Dixin
    Xu, Hongteng
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 12, 2023, : 14566 - 14574
  • [32] Gromov-Wasserstein Multi-modal Alignment and Clustering
    Gong, Fengjiao
    Nie, Yuzhou
    Xu, Hongteng
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 603 - 613
  • [33] Orthogonal Gromov-Wasserstein Discrepancy with Efficient Lower Bound
    Jin, Hongwei
    Yu, Zishun
    Zhang, Xinhua
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 917 - 927
  • [34] Scalable Gromov-Wasserstein Based Comparison of Biological Time Series
    Kravtsova, Natalia
    McGee II, Reginald L. L.
    Dawes, Adriana T.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2023, 85 (08)
  • [35] Multi-marginal Gromov-Wasserstein transport and barycentres
    Beier, Florian
    Beinert, Robert
    Steidl, Gabriele
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2023, 12 (04) : 2720 - 2752
  • [36] Outlier-Robust Gromov-Wasserstein for Graph Data
    Kong, Lemin
    Li, Jiajin
    Tang, Jianheng
    So, Anthony Man-Cho
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [37] Propagating Uncertainty in Reinforcement Learning via Wasserstein Barycenters
    Metelli, Alberto Maria
    Likmeta, Amarildo
    Restelli, Marcello
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [38] Grownbb: Gromov-Wasserstein learning of neural best buddies for cross-domain correspondence
    Tang, Ruolan
    Wang, Weiwei
    Han, Yu
    Feng, Xiangchu
    VISUAL COMPUTER, 2024, 40 (12): : 8517 - 8530
  • [39] A spectral notion of Gromov-Wasserstein distance and related methods
    Memoli, Facundo
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2011, 30 (03) : 363 - 401
  • [40] Learning to Generate Wasserstein Barycenters
    Lacombe, Julien
    Digne, Julie
    Courty, Nicolas
    Bonneel, Nicolas
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2023, 65 (02) : 354 - 370