Learning Graphons via Structured Gromov-Wasserstein Barycenters

被引:0
|
作者
Xu, Hongteng [1 ,2 ]
Luo, Dixin [3 ]
Carin, Lawrence [4 ]
Zha, Hongyuan [5 ]
机构
[1] Renmin Univ China, Gaoling Sch Artificial Intelligence, Beijing, Peoples R China
[2] Beijing Key Lab Big Data Management & Anal Method, Beijing, Peoples R China
[3] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing, Peoples R China
[4] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[5] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen Res Inst Big Data, Shenzhen, Peoples R China
关键词
MATRICES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel and principled method to learn a non-parametric graph model called graphon, which is defined in an infinite-dimensional space and represents arbitrary-size graphs. Based on the weak regularity lemma from the theory of graphons, we leverage a step function to approximate a graphon. We show that the cut distance of graphons can be relaxed to the Gromov-Wasserstein distance of their step functions. Accordingly, given a set of graphs generated by an underlying graphon, we learn the corresponding step function as the Gromov-Wasserstein barycenter of the given graphs. Furthermore, we develop several enhancements and extensions of the basic algorithm, e:g:, the smoothed Gromov-Wasserstein barycenter for guaranteeing the continuity of the learned graphons and the mixed Gromov-Wasserstein barycenters for learning multiple structured graphons. The proposed approach overcomes drawbacks of prior state-of-the-art methods, and outperforms them on both synthetic and real-world data. The code is available at https://github.com/HongtengXu/SGWB-Graphon.
引用
收藏
页码:10505 / 10513
页数:9
相关论文
共 50 条
  • [11] On a Linear Gromov-Wasserstein Distance
    Beier, Florian
    Beinert, Robert
    Steidl, Gabriele
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 7292 - 7305
  • [12] Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching
    Xu, Hongteng
    Luo, Dixin
    Carin, Lawrence
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [13] Gromov-Wasserstein Learning for Graph Matching and Node Embedding
    Xu, Hongteng
    Luo, Dixin
    Zha, Hongyuan
    Carin, Lawrence
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [14] Classification of atomic environments via the Gromov-Wasserstein distance
    Kawano, Sakura
    Mason, Jeremy K.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 188
  • [15] Subspace Detours Meet Gromov-Wasserstein
    Bonet, Clement
    Vayer, Titouan
    Courty, Nicolas
    Septier, Francois
    Drumetz, Lucas
    ALGORITHMS, 2021, 14 (12)
  • [16] The Gromov-Wasserstein Distance: A Brief Overview
    Memoli, Facundo
    AXIOMS, 2014, 3 (03): : 335 - 341
  • [17] Distributed IoT Community Detection via Gromov-Wasserstein Metric
    Chang, Shih Yu
    Chen, Yi
    Kao, Yi-Chih
    Chen, Hsiao-Hwa
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 13281 - 13298
  • [18] The Gromov-Wasserstein Distance Between Spheres
    Arya, Shreya
    Auddy, Arnab
    Clark, Ranthony A.
    Lim, Sunhyuk
    Memoli, Facundo
    Packer, Daniel
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024,
  • [19] Gromov-Wasserstein Averaging in a Riemannian Framework
    Chowdhury, Samir
    Needham, Tom
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 3876 - 3884
  • [20] Gromov-Wasserstein Guided Representation Learning for Cross-Domain Recommendation
    Li, Xinhang
    Qiu, Zhaopeng
    Zhao, Xiangyu
    Wang, Zihao
    Zhang, Yong
    Xing, Chunxiao
    Wu, Xian
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1199 - 1208