Discrete fractional Hilbert transform

被引:0
|
作者
Pei, SC [1 ]
Yeh, MH [1 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 10764, Taiwan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hilbert transform plays an important role in the signal processing. A generalization of Hilbert transform, fractional Hilbert transform, was recently proposed, and it presents physical interpretation in the definition. In this paper, we develop the discrete fractional Hilbert transform, and apply the proposed discrete fractional Hilbert transform to the edge detection applications.
引用
收藏
页码:C506 / C509
页数:4
相关论文
共 50 条
  • [31] COMPUTATION OF DISCRETE HILBERT TRANSFORM THROUGH FAST HARTLEY TRANSFORM
    PEI, SC
    JAW, SB
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1989, 36 (09): : 1251 - 1252
  • [32] A multilinear generalisation of the Hilbert transform and fractional integration
    Valdimarsson, Stefan Ingi
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (01) : 25 - 55
  • [33] Fractional hilbert transform and isotropic Hilbert Transform for two dimensional objects:: Numerical simulation.
    Torres, M
    Tepichín, E
    Lohmann, AW
    Sánchez, D
    Ramírez, G
    [J]. 18TH CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: OPTICS FOR THE NEXT MILLENNIUM, TECHNICAL DIGEST, 1999, 3749 : 42 - 43
  • [34] ON THE lp-NORM OF THE DISCRETE HILBERT TRANSFORM
    Banuelos, Rodrigo
    Kwasnicki, Mateusz
    [J]. DUKE MATHEMATICAL JOURNAL, 2019, 168 (03) : 471 - 504
  • [35] ALTERNATIVE MATRIX FORMULATION OF DISCRETE HILBERT TRANSFORM
    ROY, SCD
    [J]. PROCEEDINGS OF THE IEEE, 1976, 64 (09) : 1435 - 1435
  • [36] SPARSE BOUNDS FOR THE DISCRETE CUBIC HILBERT TRANSFORM
    Culiuc, Amalia
    Kesler, Robert
    Lacey, Michael T.
    [J]. ANALYSIS & PDE, 2019, 12 (05): : 1259 - 1272
  • [37] Traces of the Discrete Hilbert Transform with Quadratic Phase
    Oskolkov, K. I.
    Chakhkiev, M. A.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 280 (01) : 248 - 262
  • [38] Traces of the discrete Hilbert transform with quadratic phase
    K. I. Oskolkov
    M. A. Chakhkiev
    [J]. Proceedings of the Steklov Institute of Mathematics, 2013, 280 : 248 - 262
  • [39] DISCRETE HILBERT TRANSFORM ON FINITE INTERVALS.
    Blyumin, S.L.
    Trakhtman, A.M.
    [J]. Radio Engineering and Electronic Physics (English translation of Radiotekhnika i Elektronika), 1977, 22 (07): : 50 - 56
  • [40] A novel discrete fractional Fourier transform
    Tao, R
    Ping, XJ
    Shen, Y
    Zhao, XH
    [J]. 2001 CIE INTERNATIONAL CONFERENCE ON RADAR PROCEEDINGS, 2001, : 1027 - 1030