DISCRETE HILBERT TRANSFORM ON FINITE INTERVALS.

被引:0
|
作者
Blyumin, S.L.
Trakhtman, A.M.
机构
关键词
HILBERT TRANSFORMS;
D O I
暂无
中图分类号
学科分类号
摘要
A discrete Hilbert transform is introduced for signals which are specified by finite number of samples. A relationship between this transform and the spectral analysis of signals in the Vilenkin-Krestenson functional basis is established. Typical properties of the transform which are analogous to the properties of the classical Hilbert transform are investigated.
引用
收藏
页码:50 / 56
相关论文
共 50 条
  • [1] Diagonalization of the Finite Hilbert Transform on Two Adjacent Intervals
    A. Katsevich
    A. Tovbis
    [J]. Journal of Fourier Analysis and Applications, 2016, 22 : 1356 - 1380
  • [2] Diagonalization of the Finite Hilbert Transform on Two Adjacent Intervals
    Katsevich, A.
    Tovbis, A.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (06) : 1356 - 1380
  • [3] Analysis of Discrete Systems with Random Quantization Intervals.
    Madorskii, L.S.
    [J]. Izvestia vyssih ucebnyh zavedenij. Priborostroenie, 1983, 26 (02): : 35 - 39
  • [4] Diagonalization of the finite Hilbert transform on two adjacent intervals: the Riemann–Hilbert approach
    Marco Bertola
    Elliot Blackstone
    Alexander Katsevich
    Alexander Tovbis
    [J]. Analysis and Mathematical Physics, 2020, 10
  • [5] Diagonalization of the finite Hilbert transform on two adjacent intervals: the Riemann-Hilbert approach
    Bertola, Marco
    Blackstone, Elliot
    Katsevich, Alexander
    Tovbis, Alexander
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (03)
  • [6] On singular limits of finite Hilbert transform operators on multi-intervals
    Bertola, M.
    Blackstone, E.
    Katsevich, A.
    Tovbis, A.
    [J]. MATHEMATISCHE NACHRICHTEN, 2024, 297 (04) : 1328 - 1369
  • [7] On the numerical implementation of discrete finite Hilbert transform for image reconstruction
    Yang, Yi
    Tang, Shaojie
    Tang, Xiangyang
    [J]. MEDICAL IMAGING 2012: PHYSICS OF MEDICAL IMAGING, 2012, 8313
  • [8] Limits of calculating the finite Hilbert transform from discrete samples
    Boche, Holger
    Pohl, Volker
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, 46 (01) : 66 - 93
  • [9] DISCRETE HILBERT TRANSFORM
    CIZEK, V
    [J]. IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1970, AU18 (04): : 340 - +
  • [10] On melting intervals.
    Meyerhoffer, W
    [J]. ZEITSCHRIFT FUR KRYSTALLOGRAPHIE UND MINERALOGIE, 1904, 39 (04): : 374 - 378