Adaptive meshless numerical method of solving 2D variable order time fractional mobile-immobile advection-diffusion equations

被引:5
|
作者
Du, Hong [1 ]
Chen, Zhong [2 ]
机构
[1] GuangDong Ocean Univ, Coll Math & Comp Sci, Zhanjiang 524000, Guangdong, Peoples R China
[2] Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Shandong, Peoples R China
关键词
Variable order fractional differential equations; Reproducing kernel Hilbert space; Adaptive meshless methods; SOLUTE TRANSPORT;
D O I
10.1016/j.camwa.2022.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper inspires us to propose an adaptive meshless numerical method of solving a 2D variable order time fractional mobile-immobile advection-diffusion equation on arbitrary domain. The mentioned method has three main contributions. (i) The adaptive meshless method could decrease amounts of computations effectively. (ii) On arbitrary domain, we successfully apply Legendre multiwaves in reproducing kernel Hilbert space (RKHS) defined on rectangle domain to approximate the exact solution. (iii) We skillfully build a special spline space, convergence order is obtained in view of convergence theories of spline space. Numerical experiments further demonstrate the validity of the method.
引用
收藏
页码:42 / 51
页数:10
相关论文
共 50 条
  • [31] A stable numerical method for solving variable coefficient advection-diffusion models
    Ponsoda, Enrique
    Defez, Emilio
    Rosello, Maria Dolores
    Romero, Jose Vicente
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (03) : 754 - 768
  • [32] Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order
    Qu, Hai-Dong
    Liu, Xuan
    Lu, Xin
    Rahman, Mati Ur
    She, Zi-Hang
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 156
  • [33] High-Order Numerical Approximation for 2D Time-Fractional Advection-Diffusion Equation under Caputo Derivative
    Zhang, Xindong
    Chen, Yan
    Wei, Leilei
    [J]. FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [34] A fast finite difference method for 2D time variable fractional mobile/immobile equation
    Haili Qiao
    Aijie Cheng
    [J]. Journal of Applied Mathematics and Computing, 2024, 70 : 551 - 577
  • [35] A fast finite difference method for 2D time variable fractional mobile/immobile equation
    Qiao, Haili
    Cheng, Aijie
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (01) : 551 - 577
  • [36] A fast Fourier spectral exponential time-differencing method for solving the time-fractional mobile-immobile advection-dispersion equation
    Mohammadi, S.
    Ghasemi, M.
    Fardi, M.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [37] A Crank-Nicolson difference scheme for the time variable fractional mobile-immobile advection-dispersion equation
    Liu, Zhengguang
    Li, Xiaoli
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 56 (1-2) : 391 - 410
  • [38] SOR Iterative Method with Wave Variable Transformation for Solving Advection-Diffusion Equations
    Ali, N. A. M.
    Rahman, R.
    Sulaiman, J.
    Ghazali, K.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2018 (ICOMEIA 2018), 2018, 2013
  • [40] Adaptive method for the solution of 1D and 2D advection-diffusion equations used in environmental engineering
    Szymkiewicz, Romuald
    Gasiorowski, Dariusz
    [J]. JOURNAL OF HYDROINFORMATICS, 2021, 23 (06) : 1290 - 1311