A stable numerical method for solving variable coefficient advection-diffusion models

被引:5
|
作者
Ponsoda, Enrique [1 ]
Defez, Emilio [1 ]
Rosello, Maria Dolores [1 ]
Romero, Jose Vicente [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, E-46071 Valencia, Spain
关键词
advection-diffusion equation; time dependent coefficients; CE-SE numerical scheme; amplification matrix; stability;
D O I
10.1016/j.camwa.2008.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent paper [E. Defez, R. Company, E. Ponsoda, L. War, Aplicacion del metodo CE-SE a la ecuacion de adveccion-difusion con coeficientes variables, Congreso de Metodos Numericos en Ingeniera (SEMNI), Granada, Spain, 20051 a modified space-time conservation element and solution element scheme for solving the advection-diffusion equation with time-dependent coefficients, is proposed. This equation appears in many physical and technological models like gas flow in industria tubes, conduction of heat in solids or the evaluation of the heating through radiation of microwaves when the properties of the media change with time. This method improves the well-established methods, like finite differences or finite elements: the integral form of the problem exploits the physical properties of conservation of flow, unlike the differential form. Also, this explicit scheme evaluates the variable and its derivative simultaneously in each knot of the partitioned domain. The modification proposed in [E. Defez, R. Company, E. Ponsoda, L. War, Aplicacion del metodo CE-SE a]a ecuacion de adveccion-difusion con coeficientes variables, Congreso de Metodos Numericos en Ingeniera (SEMNI), Granada, Spain, 2005] with regard the original method [S.C. Chang, The method of space-time conservation element and solution element. A new approach for solving the Navier-Stokes and Euler equations, J. Comput. Phys. 119 (1995) 295-324] consists of keeping the variable character of the coefficients in the solution element, without considering the linear approximation. In this paper the stability of the proposed method is studied and a CFL condition is obtained. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:754 / 768
页数:15
相关论文
共 50 条
  • [1] A second order numerical method for solving advection-diffusion models
    Company, R.
    Ponsoda, E.
    Romero, J. -V.
    Rosello, M. -D.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (5-6) : 806 - 811
  • [2] SOR Iterative Method with Wave Variable Transformation for Solving Advection-Diffusion Equations
    Ali, N. A. M.
    Rahman, R.
    Sulaiman, J.
    Ghazali, K.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2018 (ICOMEIA 2018), 2018, 2013
  • [3] A meshless method for solving the time fractional advection-diffusion equation with variable coefficients
    Mardani, A.
    Hooshmandasl, M. R.
    Heydari, M. H.
    Cattani, C.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (01) : 122 - 133
  • [4] On stable and explicit numerical methods for the advection-diffusion equation
    Witek, Marcin L.
    Teixeira, Joao
    Flatau, Piotr J.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (03) : 561 - 570
  • [5] A discontinuous enrichment method for variable-coefficient advection-diffusion at high Peclet number
    Kalashnikova, I.
    Tezaur, R.
    Farhat, C.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (1-5) : 309 - 335
  • [6] Analysis of variable coefficient advection-diffusion problems via complex variable reproducing kernel particle method
    Weng Yun-Jie
    Cheng Yu-Min
    [J]. CHINESE PHYSICS B, 2013, 22 (09)
  • [7] Finite Element Method for Solving the Advection-Diffusion Equation
    Amali, Onjefu
    Agwu, Nwojo N.
    [J]. 2017 13TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTER AND COMPUTATION (ICECCO), 2017,
  • [8] Analysis of variable coefficient advection-diffusion problems via complex variable reproducing kernel particle method
    翁云杰
    程玉民
    [J]. Chinese Physics B, 2013, 22 (09) : 201 - 206
  • [9] Numerical Method for Fractional Advection-Diffusion Equation with Heredity
    Pimenov V.G.
    [J]. Journal of Mathematical Sciences, 2018, 230 (5) : 737 - 741
  • [10] Lattice models of advection-diffusion
    Pierrehumbert, RT
    [J]. CHAOS, 2000, 10 (01) : 61 - 74