Machine-Learning Rationalization and Prediction of Solid-State Synthesis Conditions

被引:37
|
作者
Huo, Haoyan [1 ,2 ]
Bartel, Christopher J. [1 ,2 ]
He, Tanjin [1 ,2 ]
Trewartha, Amalie [2 ,3 ]
Dunn, Alexander [1 ,4 ]
Ouyang, Bin [1 ,2 ]
Jain, Anubhav [4 ]
Ceder, Gerbrand [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Toyota Res Inst, 4440 El Camino Real, Los Altos, CA 94022 USA
[4] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
IN-SITU; DATASET; BATIO3; GROWTH;
D O I
10.1021/acs.chemmater.2c01293
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
There currently exist no quantitative methods to determine the appropriate conditions for solid-state synthesis. This not only hinders the experimental realization of novel materials but also complicates the interpretation and understanding of solid-state reaction mechanisms. Here, we demonstrate a machine-learning approach that predicts synthesis conditions using large solid-state synthesis data sets text-mined from scientific journal articles. Using feature importance ranking analysis, we discovered that optimal heating temperatures have strong correlations with the stability of precursor materials quantified using melting points and formation energies (& UDelta;Gf, & UDelta;Hf). In contrast, features derived from the thermodynamics of synthesis-related reactions did not directly correlate to the chosen heating temperatures. This correlation between optimal solid-state heating temperature and precursor stability extends Tamman's rule from intermetallics to oxide systems, suggesting the importance of reaction kinetics in determining synthesis conditions. Heating times are shown to be strongly correlated with the chosen experimental procedures and instrument setups, which may be indicative of human bias in the data set. Using these predictive features, we constructed machine-learning models with good performance and general applicability to predict the conditions required to synthesize diverse chemical systems.
引用
收藏
页码:7323 / 7336
页数:14
相关论文
共 50 条
  • [1] Machine-learning rationalization and prediction of solid-state synthesis conditions
    Huo, Haoyan
    Bartel, Christopher J.
    He, Tanjin
    Trewartha, Amalie
    Dunn, Alexander
    Ouyang, Bin
    Jain, Anubhav
    Ceder, Gerbrand
    arXiv, 2022,
  • [2] Machine-Learning Approaches for the Discovery of Electrolyte Materials for Solid-State Lithium Batteries
    Hu, Shengyi
    Huang, Chun
    BATTERIES-BASEL, 2023, 9 (04):
  • [3] Probing degradation at solid-state battery interfaces using machine-learning interatomic potential
    Kim, Kwangnam
    Adelstein, Nicole
    Dive, Aniruddha
    Grieder, Andrew
    Kang, Shinyoung
    Wood, Brandon C.
    Wan, Liwen F.
    ENERGY STORAGE MATERIALS, 2024, 73
  • [4] Application of machine-learning methods to solid-state chemistry: ferromagnetism in transition metal alloys
    Landrum, GA
    Genin, H
    JOURNAL OF SOLID STATE CHEMISTRY, 2003, 176 (02) : 587 - 593
  • [5] Machine Learning-Assisted Property Prediction of Solid-State Electrolyte
    Li, Jin
    Zhou, Meisa
    Wu, Hong-Hui
    Wang, Lifei
    Zhang, Jian
    Wu, Naiteng
    Pan, Kunming
    Liu, Guilong
    Zhang, Yinggan
    Han, Jiajia
    Liu, Xianming
    Chen, Xiang
    Wan, Jiayu
    Zhang, Qiaobao
    ADVANCED ENERGY MATERIALS, 2024, 14 (20)
  • [6] Machine learning for accurate and fast bandgap prediction of solid-state materials
    Verma, Shomik
    Kajale, Shivam
    Gomez-Bombarelli, Rafael
    2022 IEEE HIGH PERFORMANCE EXTREME COMPUTING VIRTUAL CONFERENCE (HPEC), 2022,
  • [7] Solid-State Lithium Battery Cycle Life Prediction Using Machine Learning
    Cheng, Danpeng
    Sha, Wuxin
    Wang, Linna
    Tang, Shun
    Ma, Aijun
    Chen, Yongwei
    Wang, Huawei
    Lou, Ping
    Lu, Songfeng
    Cao, Yuan-Cheng
    APPLIED SCIENCES-BASEL, 2021, 11 (10):
  • [8] Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte
    Hu, Qianyu
    Chen, Kunfeng
    Liu, Fei
    Zhao, Mengying
    Liang, Feng
    Xue, Dongfeng
    MATERIALS, 2022, 15 (03)
  • [9] MACHINE LEARNING SUPPORTS SOLID-STATE BATTERIES
    不详
    ADVANCED MATERIALS & PROCESSES, 2023, 181 (05): : 10 - 10
  • [10] ZeoSyn: A Comprehensive Zeolite Synthesis Dataset Enabling Machine-Learning Rationalization of Hydrothermal Parameters
    Pan, Elton
    Kwon, Soonhyoung
    Jensen, Zach
    Xie, Mingrou
    Gomez-Bombarelli, Rafael
    Moliner, Manuel
    Roman-Leshkov, Yuriy
    Olivetti, Elsa
    ACS CENTRAL SCIENCE, 2024, 10 (03) : 729 - 743