Machine-learning rationalization and prediction of solid-state synthesis conditions

被引:0
|
作者
Huo, Haoyan [1 ,2 ]
Bartel, Christopher J. [1 ,2 ]
He, Tanjin [1 ,2 ]
Trewartha, Amalie [2 ]
Dunn, Alexander [1 ,3 ]
Ouyang, Bin [1 ,2 ]
Jain, Anubhav [3 ]
Ceder, Gerbrand [1 ,2 ]
机构
[1] Department of Materials Science and Engineering, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley,CA,94720, United States
[2] Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley,CA,94720, United States
[3] Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley,CA,94720, United States
来源
arXiv | 2022年
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Heating temperature
引用
收藏
相关论文
共 50 条
  • [1] Machine-Learning Rationalization and Prediction of Solid-State Synthesis Conditions
    Huo, Haoyan
    Bartel, Christopher J.
    He, Tanjin
    Trewartha, Amalie
    Dunn, Alexander
    Ouyang, Bin
    Jain, Anubhav
    Ceder, Gerbrand
    CHEMISTRY OF MATERIALS, 2022, 34 (16) : 7323 - 7336
  • [2] Machine-Learning Approaches for the Discovery of Electrolyte Materials for Solid-State Lithium Batteries
    Hu, Shengyi
    Huang, Chun
    BATTERIES-BASEL, 2023, 9 (04):
  • [3] Probing degradation at solid-state battery interfaces using machine-learning interatomic potential
    Kim, Kwangnam
    Adelstein, Nicole
    Dive, Aniruddha
    Grieder, Andrew
    Kang, Shinyoung
    Wood, Brandon C.
    Wan, Liwen F.
    ENERGY STORAGE MATERIALS, 2024, 73
  • [4] Application of machine-learning methods to solid-state chemistry: ferromagnetism in transition metal alloys
    Landrum, GA
    Genin, H
    JOURNAL OF SOLID STATE CHEMISTRY, 2003, 176 (02) : 587 - 593
  • [5] Machine Learning-Assisted Property Prediction of Solid-State Electrolyte
    Li, Jin
    Zhou, Meisa
    Wu, Hong-Hui
    Wang, Lifei
    Zhang, Jian
    Wu, Naiteng
    Pan, Kunming
    Liu, Guilong
    Zhang, Yinggan
    Han, Jiajia
    Liu, Xianming
    Chen, Xiang
    Wan, Jiayu
    Zhang, Qiaobao
    ADVANCED ENERGY MATERIALS, 2024, 14 (20)
  • [6] Machine learning for accurate and fast bandgap prediction of solid-state materials
    Verma, Shomik
    Kajale, Shivam
    Gomez-Bombarelli, Rafael
    2022 IEEE HIGH PERFORMANCE EXTREME COMPUTING VIRTUAL CONFERENCE (HPEC), 2022,
  • [7] Solid-State Lithium Battery Cycle Life Prediction Using Machine Learning
    Cheng, Danpeng
    Sha, Wuxin
    Wang, Linna
    Tang, Shun
    Ma, Aijun
    Chen, Yongwei
    Wang, Huawei
    Lou, Ping
    Lu, Songfeng
    Cao, Yuan-Cheng
    APPLIED SCIENCES-BASEL, 2021, 11 (10):
  • [8] Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte
    Hu, Qianyu
    Chen, Kunfeng
    Liu, Fei
    Zhao, Mengying
    Liang, Feng
    Xue, Dongfeng
    MATERIALS, 2022, 15 (03)
  • [9] MACHINE LEARNING SUPPORTS SOLID-STATE BATTERIES
    不详
    ADVANCED MATERIALS & PROCESSES, 2023, 181 (05): : 10 - 10
  • [10] ZeoSyn: A Comprehensive Zeolite Synthesis Dataset Enabling Machine-Learning Rationalization of Hydrothermal Parameters
    Pan, Elton
    Kwon, Soonhyoung
    Jensen, Zach
    Xie, Mingrou
    Gomez-Bombarelli, Rafael
    Moliner, Manuel
    Roman-Leshkov, Yuriy
    Olivetti, Elsa
    ACS CENTRAL SCIENCE, 2024, 10 (03) : 729 - 743