Machine-learning rationalization and prediction of solid-state synthesis conditions

被引:0
|
作者
Huo, Haoyan [1 ,2 ]
Bartel, Christopher J. [1 ,2 ]
He, Tanjin [1 ,2 ]
Trewartha, Amalie [2 ]
Dunn, Alexander [1 ,3 ]
Ouyang, Bin [1 ,2 ]
Jain, Anubhav [3 ]
Ceder, Gerbrand [1 ,2 ]
机构
[1] Department of Materials Science and Engineering, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley,CA,94720, United States
[2] Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley,CA,94720, United States
[3] Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley,CA,94720, United States
来源
arXiv | 2022年
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Heating temperature
引用
收藏
相关论文
共 50 条
  • [31] Recent advances and applications of machine learning in solid-state materials science
    Jonathan Schmidt
    Mário R. G. Marques
    Silvana Botti
    Miguel A. L. Marques
    npj Computational Materials, 5
  • [32] Accelerated Atomistic Modeling of Solid-State Battery Materials With Machine Learning
    Guo, Haoyue
    Wang, Qian
    Stuke, Annika
    Urban, Alexander
    Artrith, Nongnuch
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [33] Machine Learning in Solid-State Hydrogen Storage Materials: Challenges and Perspectives
    Zhou, Panpan
    Zhou, Qianwen
    Xiao, Xuezhang
    Fan, Xiulin
    Zou, Yongjin
    Sun, Lixian
    Jiang, Jinghua
    Song, Dan
    Chen, Lixin
    ADVANCED MATERIALS, 2025, 37 (06)
  • [34] Recent advances and applications of machine learning in solid-state materials science
    Schmidt, Jonathan
    Marques, Mario R. G.
    Botti, Silvana
    Marques, Miguel A. L.
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [35] Temperature-dependent performance prediction for cerium oxynitride solid-state symmetric supercapacitor using machine learning
    Ghosh, Sourav
    Sibi, Ashwath
    Priyanga, G. Sudha
    Dagdia, Zaineb Chelly
    Thomas, Tiju
    JOURNAL OF ENERGY STORAGE, 2025, 113
  • [36] Machine Learning towards Screening Solid-state Lithium Ion Conductors
    LU Yang
    CHEN Xiang
    ZHAO Chen-Zi
    ZHANG Qiang
    ChineseJournalofStructuralChemistry, 2020, 39 (01) : 8 - 10
  • [37] MACHINE CALCULATIONS IN SOLID-STATE DIFFUSION
    JACUCCI, G
    JOURNAL OF METALS, 1983, 35 (08): : A29 - A29
  • [38] Machine-Learning Based TCP Security Action Prediction
    Zhao, Quanling
    Sun, Jiawei
    Ren, Hongjia
    Sun, Guodong
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1325 - 1329
  • [39] Prediction of Nucleophilicity and Electrophilicity Based on a Machine-Learning Approach
    Liu, Yidi
    Yang, Qi
    Cheng, Junjie
    Zhang, Long
    Luo, Sanzhong
    Cheng, Jin-Pei
    CHEMPHYSCHEM, 2023, 24 (14)
  • [40] Machine-Learning Prediction of Underwater Shock Loading on Structures
    Zhang, Mou
    Drikakis, Dimitris
    Li, Lei
    Yan, Xiu
    COMPUTATION, 2019, 7 (04)