Design of Pipelined Parallel Turbo Decoder Using Contention Free Interleaver

被引:0
|
作者
Karim, S. M. [1 ]
Chakrabarti, Indrajit [1 ]
机构
[1] Indian Inst Technol, Dept E & ECE, Kharagpur 721302, W Bengal, India
关键词
Parallel Turbo codes; pipelined architecture; contention free interleaver; next iteration initialization;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The work presented in this paper details an efficient architecture of a pipelined parallel turbo decoder utilizing contention free interleaver. Pipeline technique has been applied to reduce the critical path delay associated to the add compare select Offset (ACSO) unit so as to increase the operating clock frequency. The computational core of the complex maximum a posteriori probability (MAP) decoder has been optimized to achieve the throughput requirement for the real time applications. The proposed decoder which consists of 32 MAP decoder core, achieves 1.138 Gbps data rate at a maximum clock frequency of 486 MHz when implemented in a 90 nm CMOS process with a silicon area of 13.82 mm(2). The proposed decoder can be made appropriate for low power portable devices by relaxing the throughput requirement.
引用
收藏
页码:646 / 650
页数:5
相关论文
共 50 条
  • [1] Turbo Decoder Using Contention-Free Interleaver and Parallel Architecture
    Wong, Cheng-Chi
    Lai, Ming-Wei
    Lin, Chien-Ching
    Chang, Hsie-Chia
    Lee, Chen-Yi
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2010, 45 (02) : 422 - 432
  • [2] High-throughput turbo decoder using pipelined parallel architecture and collision-free interleaver
    Karim, S. M.
    Chakrabarti, I.
    [J]. IET COMMUNICATIONS, 2012, 6 (11) : 1416 - 1424
  • [3] A novel QPP interleaver for parallel turbo decoder
    Liu, Wei
    Chen, Shuming
    Chen, Hu
    Wang, Yaohua
    Liu, Sheng
    Zhang, Kai
    Ning, Xi
    [J]. IEICE ELECTRONICS EXPRESS, 2013, 10 (08):
  • [4] Variable-size interleaver design for parallel turbo decoder architectures
    Dinoi, L
    Benedetto, S
    [J]. GLOBECOM '04: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6, 2004, : 3108 - 3112
  • [5] Implementation of a parallel turbo decoder with dividable interleaver
    Kwak, J
    Park, SM
    Yoon, SS
    Lee, K
    [J]. PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL II: COMMUNICATIONS-MULTIMEDIA SYSTEMS & APPLICATIONS, 2003, : 65 - 68
  • [6] Variable-size interleaver design for parallel turbo decoder architectures
    Dinoi, L
    Benedetto, S
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2005, 53 (11) : 1833 - 1840
  • [7] An Area-Efficient Parallel Turbo Decoder Based on Contention Free Algorithm
    Tseng, Kai-Hsin
    Chuang, Hsiang-Tsung
    Tseng, Shao-Yen
    Fang, Wai-Chi
    [J]. 2009 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), PROCEEDINGS OF TECHNICAL PROGRAM, 2009, : 203 - 206
  • [8] High-Throughput Contention-Free Concurrent Interleaver Architecture for Multi-Standard Turbo Decoder
    Wang, Guohui
    Sun, Yang
    Cavallaro, Joseph R.
    Guo, Yuanbin
    [J]. ASAP 2011 - 22ND IEEE INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS (ASAP 2011), 2011, : 113 - 121
  • [9] Interleaver for high parallelizable turbo decoder
    Boher, Laurent
    Dore, Jean-Baptiste
    Helard, Maryline
    Gallard, Christian
    [J]. MULTI-CARRIER SPREAD SPECTRUM 2007, 2007, 1 : 67 - +
  • [10] Parallel Interleaver Design for a High Throughput HSPA plus /LTE Multi-Standard Turbo Decoder
    Wang, Guohui
    Shen, Hao
    Sun, Yang
    Cavallaro, Joseph R.
    Vosoughi, Aida
    Guo, Yuanbin
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (05) : 1376 - 1389