Riemann-Liouville Fractional Versions of Hadamard inequality for Strongly m-Convex Functions

被引:4
|
作者
Farid, Ghulam [1 ]
Akbar, Saira Bano [2 ]
Rathour, Laxmi [3 ]
Mishra, Lakshmi Narayan [4 ]
Mishra, Vishnu Narayan [5 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Attock Campus, Islamabad, Pakistan
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Islamabad, Pakistan
[3] Ward 16,Bhagatbandh, Anuppur 484224, Madhya Pradesh, India
[4] Vellore Inst Technol VIT Univ, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[5] Indira Gandhi Natl Tribal Univ, Dept Math, Anuppur 484887, Madhya Pradesh, India
关键词
m-convex function; strongly m-convex function; Hadamard inequality; Riemann-Liouville fractional integrals; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.28924/2291-8639-20-2022-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with Hadamard inequalities for strongly m-convex functions via Riemann-Liouville fractional integrals. These inequalities provide refinements of well known fractional integral inequalities for convex functions. Further, by applying an identity error estimations are obtained and compared with already known error estimations.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] RIEMANN-LIOUVILLE FRACTIONAL VERSIONS OF HADAMARD INEQUALITY FOR STRONGLY (α, m)-CONVEX FUNCTIONS
    Farid, Ghulam
    Akbar, Saira Bano
    Rathour, Laxmi
    Mishra, Lakshmi Narayan
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (04): : 687 - 704
  • [2] Inequalities for Riemann-Liouville Fractional Integrals of Strongly (s, m)-Convex Functions
    Zhang, Fuzhen
    Farid, Ghulam
    Akbar, Saira Bano
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [3] On the Hermite-Hadamard type inequality for ψ-Riemann-Liouville fractional integrals via convex functions
    Liu, Kui
    Wang, JinRong
    O'Regan, Donal
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [4] INEQUALITIES FOR CO-ORDINATED M-CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Yildiz, Cetin
    Tunc, Mevlut
    Kavurmaci, Havva
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2014, 5 (01): : 45 - 55
  • [5] Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α, m)-convex functions
    Farid, Ghulam
    Yasmeen, Hafsa
    Ahmad, Hijaz
    Jung, Chahn Yong
    [J]. AIMS MATHEMATICS, 2021, 6 (10): : 11403 - 11424
  • [6] Caputo Fractional Derivative Hadamard Inequalities for Strongly m-Convex Functions
    Feng, Xue
    Feng, Baolin
    Farid, Ghulam
    Bibi, Sidra
    Xiaoyan, Qi
    Wu, Ze
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [7] Inequalities for generalized Riemann-Liouville fractional integrals of generalized strongly convex functions
    Farid, Ghulam
    Kwun, Young Chel
    Yasmeen, Hafsa
    Akkurt, Abdullah
    Kang, Shin Min
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [8] Hermite-Hadamard Type Riemann-Liouville Fractional Integral Inequalities for Convex Functions
    Tomar, Muharrem
    Set, Erhan
    Sarikaya, M. Zeki
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [9] THE LEFT RIEMANN-LIOUVILLE FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS
    Kunt, Mehmet
    Karapinar, Dunya
    Turhan, Sercan
    Iscan, Imdat
    [J]. MATHEMATICA SLOVACA, 2019, 69 (04) : 773 - 784
  • [10] HERMITE-HADAMARD TYPE INEQUALITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS VIA STRONGLY h-CONVEX FUNCTIONS
    Xing, Yi
    Jiang, Chaoqun
    Ruan, Jianmiao
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (04): : 1309 - 1332