Riemann-Liouville Fractional Versions of Hadamard inequality for Strongly m-Convex Functions

被引:4
|
作者
Farid, Ghulam [1 ]
Akbar, Saira Bano [2 ]
Rathour, Laxmi [3 ]
Mishra, Lakshmi Narayan [4 ]
Mishra, Vishnu Narayan [5 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Attock Campus, Islamabad, Pakistan
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Islamabad, Pakistan
[3] Ward 16,Bhagatbandh, Anuppur 484224, Madhya Pradesh, India
[4] Vellore Inst Technol VIT Univ, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[5] Indira Gandhi Natl Tribal Univ, Dept Math, Anuppur 484887, Madhya Pradesh, India
关键词
m-convex function; strongly m-convex function; Hadamard inequality; Riemann-Liouville fractional integrals; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.28924/2291-8639-20-2022-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with Hadamard inequalities for strongly m-convex functions via Riemann-Liouville fractional integrals. These inequalities provide refinements of well known fractional integral inequalities for convex functions. Further, by applying an identity error estimations are obtained and compared with already known error estimations.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (α,m)-preinvex functions
    Du, TingSong
    Liao, JiaGen
    Chen, LianZi
    Awan, Muhammad Uzair
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [22] Fractional generalized Hadamard and Fejer-Hadamard inequalities for m-convex functions
    Yang, Xiuzhi
    Farid, G.
    Nazeer, Waqas
    Yussouf, Muhammad
    Chu, Yu-Ming
    Dong, Chunfa
    [J]. AIMS MATHEMATICS, 2020, 5 (06): : 6325 - 6340
  • [23] STUDY OF A GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL VIA CONVEX FUNCTIONS
    Farid, Ghulam
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 37 - 48
  • [24] NEW GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Mohammed, Pshtiwan Othman
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 511 - 519
  • [25] Inequalities for fractional Riemann-Liouville integrals of certain class of convex functions
    Farid, Ghulam
    Pecaric, Josip
    Nonlaopon, Kamsing
    [J]. ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [26] RIEMANN-LIOUVILLE FRACTIONAL COSINE FUNCTIONS
    Mei, Zhan-Dong
    Peng, Ji-Gen
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [27] NEW HERMITE-HADAMARD-FEJER TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS FOR CONVEX FUNCTIONS
    Qi, Yongfang
    Li, Guoping
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (07)
  • [28] Hermite-Hadamard Type Inequalities for s-Convex Functions via Riemann-Liouville Fractional Integrals
    Wang, Shu-Hong
    Qi, Feng
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (06) : 1124 - 1134
  • [29] HERMITE-HADAMARD TYPE INEQUALITIES FOR PRODUCT OF HARMONICALLY CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Kunt, Mehmet
    Iscan, Imdat
    Yazici, Nazli
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 7 (04): : 74 - 82
  • [30] FRACTIONAL VERSIONS OF HADAMARD INEQUALITIES FOR STRONGLY (s, m)-CONVEX FUNCTIONS VIA CAPUTO FRACTIONAL DERIVATIVES
    Farid, Ghulam
    Bibi, Sidra
    Rathour, Laxmi
    Mishra, Lakshmi Narayan
    Mishra, Vishnu Narayan
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (01): : 75 - 94