CONTINUOUS-TIME MULTITYPE BRANCHING PROCESSES CONDITIONED ON VERY LATE EXTINCTION

被引:1
|
作者
Penisson, Sophie [1 ]
机构
[1] Univ Paris Est Creteil, Lab Anal & Math Appl UMR 8050, F-94010 Creteil, France
关键词
Multitype branching process; Feller diffusion process; conditioned branching process; diffusion limit; extinction; immortal particle; long-time behavior;
D O I
10.1051/ps/2010011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multitype branching processes and Feller diffusion processes are conditioned on very late extinction. The conditioned laws are expressed as Doob h-transforms of the unconditioned laws, and an interpretation of the conditioned paths for the branching process is given, via the immortal particle. We study different limits for the conditioned process (increasing delay of extinction, long-time behavior, scaling limit) and provide an exhaustive list of exchangeability results.
引用
收藏
页码:417 / 442
页数:26
相关论文
共 50 条
  • [1] Extinction times of multitype continuous-state branching processes
    Chaumont, Loic
    Marolleau, Marine
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (02): : 563 - 577
  • [2] CONTINUOUS-TIME CONTROLLED BRANCHING PROCESSES
    del Puerto, Ines M.
    Yanev, George P.
    Molina, Manuel
    Yanev, Nikolay M.
    Gonzalez, Miguel
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2021, 74 (03): : 332 - 342
  • [3] EXTINCTION TIMES IN MULTITYPE MARKOV BRANCHING PROCESSES
    Heinzmann, Dominik
    [J]. JOURNAL OF APPLIED PROBABILITY, 2009, 46 (01) : 296 - 307
  • [4] A POLYNOMIAL TIME ALGORITHM FOR COMPUTING EXTINCTION PROBABILITIES OF MULTITYPE BRANCHING PROCESSES
    Etessami, Kousha
    Stewart, Alistair
    Yannakakis, Mihalis
    [J]. SIAM JOURNAL ON COMPUTING, 2017, 46 (05) : 1515 - 1553
  • [5] MULTITYPE CONTINUOUS-TIME MARKOV BRANCHING-PROCESS IN A PERIODIC ENVIRONMENT
    KLEIN, B
    MACDONALD, PDM
    [J]. ADVANCES IN APPLIED PROBABILITY, 1980, 12 (01) : 81 - 93
  • [6] SOME RESULTS ON MULTITYPE CONTINUOUS TIME MARKOV BRANCHING PROCESSES
    ATHREYA, KB
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 347 - &
  • [7] MULTITYPE INFINITE-ALLELE BRANCHING PROCESSES IN CONTINUOUS TIME
    McDonald, Thomas O.
    Kimmel, Marek
    [J]. JOURNAL OF APPLIED PROBABILITY, 2017, 54 (02) : 550 - 568
  • [8] GENERAL BRANCHING PROCESSES CONDITIONED ON EXTINCTION ARE STILL BRANCHING PROCESSES
    Jagers, Peter
    Lageras, Andreas N.
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 540 - 547
  • [9] MAXIMUM-LIKELIHOOD ESTIMATION FOR A MULTITYPE CONTINUOUS-TIME BRANCHING-PROCESS WITH IMMIGRATION
    NANTHI, K
    WASAN, MT
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1984, 18 (02) : 189 - 190
  • [10] DENSITY DEPENDENT CONTINUOUS-TIME MARKOV BRANCHING-PROCESSES
    VIAUD, DPL
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1985, 21 (03): : 289 - 303