CONTINUOUS-TIME MULTITYPE BRANCHING PROCESSES CONDITIONED ON VERY LATE EXTINCTION

被引:1
|
作者
Penisson, Sophie [1 ]
机构
[1] Univ Paris Est Creteil, Lab Anal & Math Appl UMR 8050, F-94010 Creteil, France
关键词
Multitype branching process; Feller diffusion process; conditioned branching process; diffusion limit; extinction; immortal particle; long-time behavior;
D O I
10.1051/ps/2010011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multitype branching processes and Feller diffusion processes are conditioned on very late extinction. The conditioned laws are expressed as Doob h-transforms of the unconditioned laws, and an interpretation of the conditioned paths for the branching process is given, via the immortal particle. We study different limits for the conditioned process (increasing delay of extinction, long-time behavior, scaling limit) and provide an exhaustive list of exchangeability results.
引用
收藏
页码:417 / 442
页数:26
相关论文
共 50 条
  • [31] LIMIT THEOREMS FOR MULTITYPE CONTINUOUS TIME MARKOV BRANCHING PROCESSES .I. CASE OF AN EIGENVECTOR LINEAR FUNCTIONAL
    ATHREYA, KB
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 12 (04): : 320 - &
  • [32] EMBEDDABILITY OF DISCRETE TIME SIMPLE BRANCHING PROCESSES INTO CONTINUOUS TIME BRANCHING PROCESSES
    KARLIN, S
    MCGREGOR, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 132 (01) : 115 - &
  • [33] On Long-Term Behavior of Continuous-Time Markov Branching Processes Allowing Immigration
    Imomov, Azam A.
    [J]. JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2014, 7 (04): : 443 - 454
  • [34] ESTIpop: a computational tool to simulate and estimate parameters for continuous-time Markov branching processes
    Roney, James P.
    Ferlic, Jeremy
    Michor, Franziska
    McDonald, Thomas O.
    [J]. BIOINFORMATICS, 2020, 36 (15) : 4372 - 4373
  • [35] Asymptotics of Continuous-Time Discrete State Space Branching Processes for Large Initial State
    Moehle, Martin
    Vetter, Benedict
    [J]. MARKOV PROCESSES AND RELATED FIELDS, 2021, 27 (01) : 1 - 42
  • [36] Efficient Transition Probability Computation for Continuous-Time Branching Processes via Compressed Sensing
    Xu, Jason
    Minin, Vladimir N.
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2015, : 952 - 961
  • [37] LIMIT THEOREMS FOR MULTITYPE CONTINUOUS TIME MARKOV BRANCHING PROCESSES .2. CASE OF AN ARBITRARY LINEAR FUNCTIONAL
    ATHREYA, KB
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 13 (3-4): : 204 - &
  • [38] Controlled branching processes with continuous time
    Gonzalez, Miguel
    Molina, Manuel
    del Puerto, Ines
    Yanev, Nikolay M.
    Yanev, George P.
    [J]. JOURNAL OF APPLIED PROBABILITY, 2021, 58 (03) : 830 - 848
  • [39] Local extinction in continuous-state branching processes with immigration
    Foucart, Clement
    Bravo, Geronimo Uribe
    [J]. BERNOULLI, 2014, 20 (04) : 1819 - 1844
  • [40] On the extinction of continuous-state branching processes in random environments
    Zheng, Xiangqi
    [J]. AIMS MATHEMATICS, 2021, 6 (01): : 156 - 167