Lower Bounds on Stabilizer Rank

被引:0
|
作者
Peleg, Shir [1 ]
Shpilka, Amir [1 ]
Volk, Ben Lee [2 ]
机构
[1] Tel Aviv Univ, Blavatnik Sch Comp Sci, Tel Aviv, Israel
[2] Reichman Univ, Eli Arazi Sch Comp Sci, Herzliyya, Israel
来源
QUANTUM | 2022年 / 6卷
基金
以色列科学基金会;
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The stabilizer rank of a quantum state psi is the minimal r such that vertical bar psi > = Sigma(r)(j=1) c(j) vertical bar phi(j)> for c(j) is an element of C and stabilizer states phi(j). The running time of several classical simulation methods for quantum circuits is determined by the stabi-lizer rank of the n-th tensor power of single-qubit magic states. We prove a lower bound of Omega(n) on the stabilizer rank of such states, im-proving a previous lower bound of Omega(root n) of Bravyi, Smith and Smolin [7]. Further, we prove that for a sufficiently small constant delta, the stabilizer rank of any state which is delta-close to those states is Omega(root n/ log n). This is the first non-trivial lower bound for approximate stabilizer rank. Our techniques rely on the representation of stabilizer states as quadratic functions over affine subspaces of F-2(n), and we use tools from analysis of boolean functions and complexity theory. The proof of the first result involves a careful analysis of directional derivatives of quadratic polynomials, whereas the proof of the second result uses Razborov-Smolensky low degree polynomial approxi-mations and correlation bounds against the majority function.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] NEW LOWER BOUNDS FOR THE RANK OF MATRIX MULTIPLICATION
    Landsberg, J. M.
    [J]. SIAM JOURNAL ON COMPUTING, 2014, 43 (01) : 144 - 149
  • [12] Optimal lower bounds for rank and select indexes
    Golynski, Alexander
    [J]. THEORETICAL COMPUTER SCIENCE, 2007, 387 (03) : 348 - 359
  • [13] Tensor Rank: Some Lower and Upper Bounds
    Alexeev, Boris
    Forbes, Michael A.
    Tsimerman, Jacob
    [J]. 2011 IEEE 26TH ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2011, : 283 - 291
  • [14] Optimal lower bounds for rank and select indexes
    Golynski, Alexander
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, 2006, 4051 : 370 - 381
  • [15] Effective Lower Bounds on the Matrix Rank and Their Applications
    O. A. Zverkov
    A. V. Seliverstov
    [J]. Programming and Computer Software, 2023, 49 : 441 - 447
  • [16] Lower Bounds for Leaf Rank of Leaf Powers
    Hogemo, Svein
    [J]. COMBINATORIAL ALGORITHMS, IWOCA 2024, 2024, 14764 : 341 - 353
  • [17] Rank lower bounds for the sherali-adams operator
    Rhodes, Mark
    [J]. Computation and Logic in the Real World, Proceedings, 2007, 4497 : 648 - 659
  • [18] NEW LOWER BOUNDS AND ASYMPTOTICS FOR THE CP-RANK
    Bomze, Immanuel M.
    Schachinger, Werner
    Ullrich, Reinhard
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (01) : 20 - 37
  • [19] Sharp lower and upper bounds for the Gaussian rank of a graph
    Ben-David, Emanuel
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 139 : 207 - 218
  • [20] Arithmetic Circuit Lower Bounds via Max Rank
    Kumar, Mrinal
    Maheshwari, Gaurav
    Sarma, Jayalal M. N.
    [J]. AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2013, 7965 : 661 - 672