NEW LOWER BOUNDS FOR THE RANK OF MATRIX MULTIPLICATION

被引:16
|
作者
Landsberg, J. M. [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
rank; matrix multiplication;
D O I
10.1137/120880276
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The rank of the matrix multiplication operator for n x n matrices is one of the most studied quantities in algebraic complexity theory. I prove that the rank is at least 3n(2) - o(n(2)). More precisely, for any integer p <= n - 1 the rank is at least (3 - 1/p+1)n(2) - (1 + 2p(2p/p-1))n. The previous lower bound, due to Blaser, was 5/2n(2) - 3n ( the case p = 1). The new bounds improve Blaser's bound for all n > 84. I also prove lower bounds for rectangular matrices that are significantly better than the previous bound.
引用
收藏
页码:144 / 149
页数:6
相关论文
共 50 条
  • [1] New lower bounds for the border rank of matrix multiplication
    Landsberg, Joseph M.
    Ottaviani, Giorgio
    [J]. Theory of Computing, 2015, 11 : 285 - 298
  • [2] New lower bounds for matrix multiplication and $\operatorname {det}_3$
    Conner, Austin
    Harper, Alicia
    Landsberg, J. M.
    [J]. FORUM OF MATHEMATICS PI, 2023, 11
  • [3] NOTE ON LOWER BOUNDS FOR THE RANK OF A MATRIX
    CHEN, G
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 55 (DEC) : 125 - 132
  • [4] Lower bounds for the multiplicative complexity of matrix multiplication
    M. Bläser
    [J]. computational complexity, 1999, 8 : 203 - 226
  • [5] Lower bounds for the multiplicative complexity of matrix multiplication
    Bläser, M
    [J]. COMPUTATIONAL COMPLEXITY, 1999, 8 (03) : 203 - 226
  • [6] Effective Lower Bounds on the Matrix Rank and Their Applications
    Zverkov, O. A.
    Seliverstov, A. V.
    [J]. PROGRAMMING AND COMPUTER SOFTWARE, 2023, 49 (05) : 441 - 447
  • [7] Effective Lower Bounds on the Matrix Rank and Their Applications
    O. A. Zverkov
    A. V. Seliverstov
    [J]. Programming and Computer Software, 2023, 49 : 441 - 447
  • [8] IMPROVED LOWER BOUNDS FOR SOME MATRIX MULTIPLICATION PROBLEMS
    JAJA, J
    TAKCHE, J
    [J]. INFORMATION PROCESSING LETTERS, 1985, 21 (03) : 123 - 127
  • [9] Lower Bounds for Combinatorial Algorithms for Boolean Matrix Multiplication
    Das, Debarati
    Koucky, Michal
    Saks, Michael
    [J]. 35TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2018), 2018, 96
  • [10] Low Rank Matrix-valued Chernoff Bounds and Approximate Matrix Multiplication
    Magen, Avner
    Zouzias, Anastasios
    [J]. PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 1422 - 1436