Critical survival barrier for branching random walk

被引:1
|
作者
Liu, Jingning [1 ]
Zhang, Mei [1 ,2 ]
机构
[1] Chongqing Normal Univ, Sch Math Sciences, Chongqing, Peoples R China
[2] Beijing Normal Univ, Sch Math Sciences, Lab Math, Complex Syst, Beijing, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Branching random walk; alpha-stable spine; absorption; critical barrier;
D O I
10.1007/s11464-019-0806-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a branching random walk with an absorbing barrier, where the associated one-dimensional random walk is in the domain of attraction of an alpha-stable law. We shall prove that there is a barrier and a critical value such that the process dies under the critical barrier, and survives above it. This generalizes previous result in the case that the associated random walk has finite variance.
引用
收藏
页码:1259 / 1280
页数:22
相关论文
共 50 条
  • [41] A random walk with a branching system in random environments
    Li, Ying-qiu
    Li, Xu
    Li, Quan-sheng
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (05): : 698 - 704
  • [42] A random walk with a branching system in random environments
    Ying-qiu LI
    LMAM
    ScienceinChina(SeriesA:Mathematics), 2007, (05) : 698 - 704
  • [43] Branching random walk in random environment on trees
    Machado, FP
    Popov, SY
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 106 (01) : 95 - 106
  • [44] Coexistence in locally regulated competing populations and survival of branching annihilating random walk
    Blath, Jochen
    Etheridge, Alison
    Meredith, Mark
    ANNALS OF APPLIED PROBABILITY, 2007, 17 (5-6): : 1474 - 1507
  • [45] Two-dimensional limit theorem for a critical catalytic branching random walk
    Topchii, V
    Vatutin, V
    MATHEMATICS AND COMPUTER SCIENCE III: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2004, : 387 - 395
  • [46] The range of simple branching random walk
    Grill, K
    STATISTICS & PROBABILITY LETTERS, 1996, 26 (03) : 213 - 218
  • [47] A NOTE ON THE BRANCHING RANDOM-WALK
    KAPLAN, N
    JOURNAL OF APPLIED PROBABILITY, 1982, 19 (02) : 421 - 424
  • [48] BRANCHING CAPACITY OF A RANDOM WALK RANGE
    Schapira, Bruno
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2024, 152 (03):
  • [49] Branching random walk with trapping zones
    Biard, Romain
    Mallein, Bastien
    Rabehasaina, Landy
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (07) : 2341 - 2366
  • [50] A branching random walk among disasters
    Gantert, Nina
    Junk, Stefan
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22