Critical survival barrier for branching random walk

被引:1
|
作者
Liu, Jingning [1 ]
Zhang, Mei [1 ,2 ]
机构
[1] Chongqing Normal Univ, Sch Math Sciences, Chongqing, Peoples R China
[2] Beijing Normal Univ, Sch Math Sciences, Lab Math, Complex Syst, Beijing, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Branching random walk; alpha-stable spine; absorption; critical barrier;
D O I
10.1007/s11464-019-0806-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a branching random walk with an absorbing barrier, where the associated one-dimensional random walk is in the domain of attraction of an alpha-stable law. We shall prove that there is a barrier and a critical value such that the process dies under the critical barrier, and survives above it. This generalizes previous result in the case that the associated random walk has finite variance.
引用
收藏
页码:1259 / 1280
页数:22
相关论文
共 50 条
  • [21] Electrical Resistance of the Low Dimensional Critical Branching Random Walk
    Antal A. Járai
    Asaf Nachmias
    Communications in Mathematical Physics, 2014, 331 : 67 - 109
  • [22] Conditional central limit theorem for critical branching random walk
    Hong, Wenming
    Liang, Shengli
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 555 - 574
  • [23] Critical branching-annihilating random walk of two species
    Odor, Geza
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 63 (2 I): : 021113 - 021111
  • [24] Critical branching-annihilating random walk of two species
    Odor, G
    PHYSICAL REVIEW E, 2001, 63 (02):
  • [26] The near-critical Gibbs measure of the branching random walk
    Pain, Michel
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (03): : 1622 - 1666
  • [27] Random walk on barely supercritical branching random walk
    van der Hofstad, Remco
    Hulshof, Tim
    Nagel, Jan
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (1-2) : 1 - 53
  • [28] CONVERGENCE IN LAW FOR THE CAPACITY OF THE RANGE OF A CRITICAL BRANCHING RANDOM WALK
    Bai, Tianyi
    Hu, Yueyun
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (6A): : 4964 - 4994
  • [29] Electrical Resistance of the Low Dimensional Critical Branching Random Walk
    Jarai, Antal A.
    Nachmias, Asaf
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (01) : 67 - 109
  • [30] Random walk on barely supercritical branching random walk
    Remco van der Hofstad
    Tim Hulshof
    Jan Nagel
    Probability Theory and Related Fields, 2020, 177 : 1 - 53