Bayesian Inference of Odds Ratios in Misclassified Binary Data with a Validation Substudy

被引:1
|
作者
Rahardja, Dewi [1 ,2 ]
Zhao, Yan D. [1 ,2 ]
Zhang, Hao Helen [3 ]
机构
[1] UT SW Med Ctr, Dept Clin Sci, Dallas, TX 75890 USA
[2] UT SW Med Ctr, Simmons Canc Ctr, Dallas, TX 75890 USA
[3] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
关键词
Bayesian inference; Binary data; Credible interval; Misclassification; Odds ratio;
D O I
10.1080/03610918.2010.518271
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a fully Bayesian model with a non-informative prior for analyzing misclassified binary data with a validation substudy. In addition, we derive a closed-form algorithm for drawing all parameters from the posterior distribution and making statistical inference on odds ratios. Our algorithm draws each parameter from a beta distribution, avoids the specification of initial values, and does not have convergence issues. We apply the algorithm to a data set and compare the results with those obtained by other methods. Finally, the performance of our algorithm is assessed using simulation studies.
引用
收藏
页码:1845 / 1854
页数:10
相关论文
共 50 条