Bayesian analysis of correlated misclassified binary data

被引:30
|
作者
Paulino, CD
Silva, G
Achcar, JA
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
[2] Univ Tecn Lisboa, Inst Super Tecn, Ctr Matemat & Aplicacoes, P-1049001 Lisbon, Portugal
[3] Univ Sao Paulo, Fac Med Ribeirao Preto, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
binary regression model; misclassification; random effects; Bayesian inference; Markov chain; Monte Carlo methods;
D O I
10.1016/j.csda.2004.07.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A Bayesian analysis for a random effect binary logistic regression model in the presence of misclassified data is considered. The introduction of a random effect captures the possible correlation among the binary data in each covariate pattern and hence may provide a good alternative to standard models in terms of overall fit. Markov Chain Monte Carlo methods are applied to perform the computations needed to draw inferences and make model assessment, through an illustrative example involving a real medical data set. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1120 / 1131
页数:12
相关论文
共 50 条
  • [1] A simple Bayesian analysis of misclassified binary data with a validation substudy
    Prescott, GJ
    Garthwaite, PH
    [J]. BIOMETRICS, 2002, 58 (02) : 454 - 458
  • [2] A Bayesian model for misclassified binary outcomes and correlated survival data with applications to breast cancer
    Luo, Sheng
    Yi, Min
    Huang, Xuelin
    Hunt, Kelly K.
    [J]. STATISTICS IN MEDICINE, 2013, 32 (13) : 2320 - 2334
  • [3] Marginal methods for correlated binary data with misclassified responses
    Chen, Zhijian
    Yi, Grace Y.
    Wu, Changbao
    [J]. BIOMETRIKA, 2011, 98 (03) : 647 - 662
  • [4] Bayesian confidence intervals of proportion with misclassified binary data
    Lee, Seung-Chun
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (03) : 291 - 299
  • [5] Bayesian confidence intervals of proportion with misclassified binary data?
    Seung-Chun Lee
    [J]. Journal of the Korean Statistical Society, 2013, 42 : 291 - 299
  • [6] Regression analysis for differentially misclassified correlated binary outcomes
    Tang, Li
    Lyles, Robert H.
    King, Caroline C.
    Hogan, Joseph W.
    Lo, Yungtai
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2015, 64 (03) : 433 - 449
  • [7] Bayesian Inference of Odds Ratios in Misclassified Binary Data with a Validation Substudy
    Rahardja, Dewi
    Zhao, Yan D.
    Zhang, Hao Helen
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (10) : 1845 - 1854
  • [8] Bayesian sensitivity analysis to unmeasured confounding for misclassified data
    Zhou, Qi
    Chin, Yoo-Mi
    Stamey, James D.
    Song, Joon Jin
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2020, 104 (04) : 577 - 596
  • [9] Correlated and misclassified binary observations in complex surveys
    So, Hon Yiu
    Thompson, Mary E.
    Wu, Changbao
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2020, 48 (04): : 633 - 654
  • [10] Bayesian sensitivity analysis to unmeasured confounding for misclassified data
    Qi Zhou
    Yoo-Mi Chin
    James D. Stamey
    Joon Jin Song
    [J]. AStA Advances in Statistical Analysis, 2020, 104 : 577 - 596