Bayesian confidence intervals of proportion with misclassified binary data?

被引:0
|
作者
Seung-Chun Lee
机构
[1] Hanshin University,Department of Applied Statistics
关键词
primary 62F15; secondary 62F25; Double sampling; Hierarchical Bayesian approach; Agresti-Coull interval; Likelihood-based confidence intervals;
D O I
暂无
中图分类号
学科分类号
摘要
A Bayesian approach is considered for the interval estimation of a binomial proportion in doubly sampled data. The coverage probability and the expected width of the Bayesian confidence interval are compared with likelihood-related confidence intervals. It is shown that a hierarchical Bayesian approach provides relatively simple and effective confidence intervals. In addition, it is shown that Agresti-Coull type confidence interval, discussed by Lee and Choi (2009), can be justified by the Bayesian framework.
引用
收藏
页码:291 / 299
页数:8
相关论文
共 50 条
  • [1] Bayesian confidence intervals of proportion with misclassified binary data
    Lee, Seung-Chun
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (03) : 291 - 299
  • [2] Bayesian analysis of correlated misclassified binary data
    Paulino, CD
    Silva, G
    Achcar, JA
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 49 (04) : 1120 - 1131
  • [3] A Comparison of Some Approximate Confidence Intervals for a Single Proportion for Clustered Binary Outcome Data
    Saha, Krishna K.
    Miller, Daniel
    Wang, Suojin
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2016, 12 (02): : 1 - 18
  • [4] New Confidence Intervals for the Proportion of Interest in One-Sample Correlated Binary Data
    Kang, Seung-Ho
    Lee, Yonghee
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (16) : 2865 - 2876
  • [5] CONFIDENCE INTERVALS FOR A PROPORTION
    CROW, EL
    [J]. BIOMETRIKA, 1956, 43 (3-4) : 423 - 435
  • [6] Accurate confidence intervals for proportion in studies with clustered binary outcome
    Shan, Guogen
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (10) : 3006 - 3018
  • [7] Confidence Intervals and Credibility Intervals for a Proportion
    Cepeda-Cuervo, Edilberto
    Aguilar, Wilson
    Cervantes, Victor
    Corrales, Martha
    Diaz, Ivan
    Rodriguez, Diana
    [J]. REVISTA COLOMBIANA DE ESTADISTICA, 2008, 31 (02): : 211 - 228
  • [8] A simple Bayesian analysis of misclassified binary data with a validation substudy
    Prescott, GJ
    Garthwaite, PH
    [J]. BIOMETRICS, 2002, 58 (02) : 454 - 458
  • [9] Confidence intervals for the proportion of conformance
    Lee, Chung-Han
    Wang, Hsiuying
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (08) : 1564 - 1579
  • [10] CONFIDENCE INTERVALS FOR A BINOMIAL PROPORTION
    Pobocikova, Ivana
    [J]. APLIMAT 2009: 8TH INTERNATIONAL CONFERENCE, PROCEEDINGS, 2009, : 791 - 800