A thermostatistical approach to scale-free networks

被引:0
|
作者
da Cruz, Joao P. [1 ,2 ]
Araujo, Nuno A. M. [2 ,3 ]
Raischel, Frank [4 ]
Lind, Pedro G. [5 ]
机构
[1] Univ E London, Closer Consulting Ltd, Knowledge Dock Business Ctr, London E16 2RD, England
[2] Univ Lisbon, Ctr Fis Teor & Computac, P-1749016 Lisbon, Portugal
[3] Univ Lisbon, Fac Ciencias, Dept Fis, P-1749016 Lisbon, Portugal
[4] Univ Lisbon, Fac Ciencias, Inst Dom Luiz, P-1749016 Lisbon, Portugal
[5] Carl von Ossietzky Univ Oldenburg, Wind & Inst Phys, DE-2611 Oldenburg, Germany
来源
关键词
Networks; complex systems; criticality; nonequilibrium systems; POWER LAWS; COMPLEX;
D O I
10.1142/S0129183115500709
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe an ensemble of growing scale-free networks in an equilibrium framework, providing insight into why the exponent of empirical scale-free networks in nature is typically robust. In an analogy to thermostatistics, to describe the canonical and microcanonical ensembles, we introduce a functional, whose maximum corresponds to a scale-free configuration. We then identify the equivalents to energy, Zeroth-law, entropy and heat capacity for scale-free networks. Discussing the merging of scale-free networks, we also establish an exact relation to predict their final "equilibrium" degree exponent. All analytic results are complemented with Monte Carlo simulations. Our approach illustrates the possibility to apply the tools of equilibrium statistical physics to study the properties of growing networks, and it also supports the recent arguments on the complementarity between equilibrium and nonequilibrium systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Exactly scale-free scale-free networks
    Zhang, Linjun
    Small, Michael
    Judd, Kevin
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 433 : 182 - 197
  • [2] Novel approach to design scale-free networks
    Pei, Wei-Dong
    Liu, Zhong-Xin
    Chen, Zeng-Qiang
    Yuan, Zhu-Zhi
    [J]. Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology, 2008, 30 (03): : 210 - 214
  • [3] Subnets of scale-free networks are not scale-free: Sampling properties of networks
    Stumpf, MPH
    Wiuf, C
    May, RM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (12) : 4221 - 4224
  • [4] Scale-free networks
    Barabási, AL
    Bonabeau, E
    [J]. SCIENTIFIC AMERICAN, 2003, 288 (05) : 60 - 69
  • [5] A statistical mechanics approach for scale-free networks and finite-scale networks
    Bianconi, Ginestra
    [J]. CHAOS, 2007, 17 (02)
  • [6] Scale-free networks: A discrete event simulation approach
    Kincaid, RK
    Alexandrov, N
    [J]. COMPUTATIONAL SCIENCE - ICCS 2005, PT 1, PROCEEDINGS, 2005, 3514 : 1051 - 1058
  • [7] A Novel Link Prediction Approach for Scale-free Networks
    Lee, Chungmok
    Pham, Minh
    Kim, Norman
    Jeong, Myong K.
    Lin, Dennis K. J.
    Chavalitwongse, Wanpracha Art
    [J]. WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2014, : 1333 - 1338
  • [8] Revisiting "scale-free" networks
    Keller, EF
    [J]. BIOESSAYS, 2005, 27 (10) : 1060 - 1068
  • [9] Nucleation in scale-free networks
    Chen, Hanshuang
    Shen, Chuansheng
    Hou, Zhonghuai
    Xin, Houwen
    [J]. PHYSICAL REVIEW E, 2011, 83 (03):
  • [10] Scale-free networks are rare
    Anna D. Broido
    Aaron Clauset
    [J]. Nature Communications, 10