A thermostatistical approach to scale-free networks

被引:0
|
作者
da Cruz, Joao P. [1 ,2 ]
Araujo, Nuno A. M. [2 ,3 ]
Raischel, Frank [4 ]
Lind, Pedro G. [5 ]
机构
[1] Univ E London, Closer Consulting Ltd, Knowledge Dock Business Ctr, London E16 2RD, England
[2] Univ Lisbon, Ctr Fis Teor & Computac, P-1749016 Lisbon, Portugal
[3] Univ Lisbon, Fac Ciencias, Dept Fis, P-1749016 Lisbon, Portugal
[4] Univ Lisbon, Fac Ciencias, Inst Dom Luiz, P-1749016 Lisbon, Portugal
[5] Carl von Ossietzky Univ Oldenburg, Wind & Inst Phys, DE-2611 Oldenburg, Germany
来源
关键词
Networks; complex systems; criticality; nonequilibrium systems; POWER LAWS; COMPLEX;
D O I
10.1142/S0129183115500709
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe an ensemble of growing scale-free networks in an equilibrium framework, providing insight into why the exponent of empirical scale-free networks in nature is typically robust. In an analogy to thermostatistics, to describe the canonical and microcanonical ensembles, we introduce a functional, whose maximum corresponds to a scale-free configuration. We then identify the equivalents to energy, Zeroth-law, entropy and heat capacity for scale-free networks. Discussing the merging of scale-free networks, we also establish an exact relation to predict their final "equilibrium" degree exponent. All analytic results are complemented with Monte Carlo simulations. Our approach illustrates the possibility to apply the tools of equilibrium statistical physics to study the properties of growing networks, and it also supports the recent arguments on the complementarity between equilibrium and nonequilibrium systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Complex scale-free networks
    Jeong, H
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 321 (1-2) : 226 - 237
  • [22] The modeling of scale-free networks
    Chen, QH
    Shi, DH
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 335 (1-2) : 240 - 248
  • [23] Noisy scale-free networks
    Scholz, J
    Dejori, M
    Stetter, M
    Greiner, M
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 350 (2-4) : 622 - 642
  • [24] Emergent scale-free networks
    Lynn, Christopher W.
    Holmes, Caroline M.
    Palmer, Stephanie E.
    [J]. PNAS NEXUS, 2024, 3 (07):
  • [25] Classification of scale-free networks
    Goh, KI
    Oh, E
    Jeong, H
    Kahng, B
    Kim, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) : 12583 - 12588
  • [26] Are RNA networks scale-free?
    P. Clote
    [J]. Journal of Mathematical Biology, 2020, 80 : 1291 - 1321
  • [27] Deterministic scale-free networks
    Barabási, AL
    Ravasz, E
    Vicsek, T
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 299 (3-4) : 559 - 564
  • [28] Scale-free networks are ultrasmall
    Cohen, R
    Havlin, S
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (05)
  • [29] Scale-free networks are rare
    Broido, Anna D.
    Clauset, Aaron
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [30] Scaling properties of scale-free evolving networks: Continuous approach
    Dorogovtsev, S.N.
    Mendes, J.F.F.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 63 (5 II): : 561251 - 561251