Computation of effective resistivity in materials with microinclusions by a heterogeneous multiscale finite element method

被引:5
|
作者
Epov, M. I. [1 ]
Shurina, E. P. [2 ,3 ]
Kutischeva, A. Yu. [2 ,3 ]
机构
[1] Novosibirsk State Univ, Novosibirsk 630090, Russia
[2] Novosibirsk State Tech Univ, Novosibirsk 630073, Russia
[3] Russian Acad Sci, Trofimuk Inst Petr Geol & Geophys, Siberian Branch, Novosibirsk 630090, Russia
关键词
effective resistivity; heterogeneous multiscale finite element method; heterogeneous media; ELLIPTIC PROBLEMS; POROUS-MEDIA; CONVERGENCE;
D O I
10.1134/S1029959917040051
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we propose a numerical method to obtain an effective electrical resistivity of heterogeneous media under the influence of a direct current. The heterogeneous multiscale finite element method is used to solve the direct problem of simulation of an electrostatic field. The computational experiments using the developed software complex showed that even the small inclusion concentrations define the effective resistivity of the media. In addition, the change in the localization, orientation, and geometrical shape of inclusions also leads to a significant change of the effective properties of the media.
引用
收藏
页码:407 / 416
页数:10
相关论文
共 50 条
  • [31] Application of the multiscale finite element method to flow in heterogeneous porous media
    Ye, SJ
    Xue, YQ
    Xie, CH
    WATER RESOURCES RESEARCH, 2004, 40 (09) : W0920201 - W0920209
  • [32] Effective computation of restoring force vector in finite element method
    Balazovjech, Martin
    Halada, Ladislav
    KYBERNETIKA, 2007, 43 (06) : 767 - 776
  • [33] A COMBINED FINITE ELEMENT AND MULTISCALE FINITE ELEMENT METHOD FOR THE MULTISCALE ELLIPTIC PROBLEMS
    Deng, Weibing
    Wu, Haijun
    MULTISCALE MODELING & SIMULATION, 2014, 12 (04): : 1424 - 1457
  • [34] Application of the multiscale finite element method to groundwater flow in heterogeneous porous media
    Ye, SJ
    Xue, YQ
    Wu, JC
    Xie, CH
    Computational Methods in Water Resources, Vols 1 and 2, 2004, 55 : 337 - 348
  • [35] A FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD WITH IMPROVED CONTROL OVER THE MODELING ERROR
    Arjmand, Doghonay
    Stohrer, Christian
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (02) : 463 - 487
  • [36] FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR NONLINEAR MONOTONE PARABOLIC HOMOGENIZATION PROBLEMS
    Abdulle, Assyr
    Huber, Martin E.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1659 - 1697
  • [37] AN ADAPTIVE FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR STOKES FLOW IN POROUS MEDIA
    Abdulle, A.
    Budac, O.
    MULTISCALE MODELING & SIMULATION, 2015, 13 (01): : 256 - 290
  • [38] CONVERGENCE OF THE HETEROGENEOUS MULTISCALE FINITE ELEMENT METHOD FOR ELLIPTIC PROBLEMS WITH NONSMOOTH MICROSTRUCTURES
    Du, Rui
    Ming, Pingbing
    MULTISCALE MODELING & SIMULATION, 2010, 8 (05): : 1770 - 1783
  • [39] A stochastic mixed finite element heterogeneous multiscale method for flow in porous media
    Ma, Xiang
    Zabaras, Nicholas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (12) : 4696 - 4722
  • [40] Generalized Multiscale Finite Element Method for thermoporoelasticity problems in heterogeneous and fractured media
    Ammosov, Dmitry
    Vasilyeva, Maria
    Chung, Eric T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 407