Computation of effective resistivity in materials with microinclusions by a heterogeneous multiscale finite element method

被引:5
|
作者
Epov, M. I. [1 ]
Shurina, E. P. [2 ,3 ]
Kutischeva, A. Yu. [2 ,3 ]
机构
[1] Novosibirsk State Univ, Novosibirsk 630090, Russia
[2] Novosibirsk State Tech Univ, Novosibirsk 630073, Russia
[3] Russian Acad Sci, Trofimuk Inst Petr Geol & Geophys, Siberian Branch, Novosibirsk 630090, Russia
关键词
effective resistivity; heterogeneous multiscale finite element method; heterogeneous media; ELLIPTIC PROBLEMS; POROUS-MEDIA; CONVERGENCE;
D O I
10.1134/S1029959917040051
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we propose a numerical method to obtain an effective electrical resistivity of heterogeneous media under the influence of a direct current. The heterogeneous multiscale finite element method is used to solve the direct problem of simulation of an electrostatic field. The computational experiments using the developed software complex showed that even the small inclusion concentrations define the effective resistivity of the media. In addition, the change in the localization, orientation, and geometrical shape of inclusions also leads to a significant change of the effective properties of the media.
引用
收藏
页码:407 / 416
页数:10
相关论文
共 50 条
  • [21] Multiscale stochastic finite element modeling of random elastic heterogeneous materials
    Shen, Lihua
    Xu, X. Frank
    COMPUTATIONAL MECHANICS, 2010, 45 (06) : 607 - 621
  • [22] An iterative numerical scheme for the calculation of the effective moduli of heterogeneous materials with finite element method
    Bao, J. Q.
    Yang, Q.
    Yuan, W. F.
    JOURNAL OF COMPOSITE MATERIALS, 2012, 46 (13) : 1561 - 1570
  • [23] Multiscale finite element analysis of uncertain-but-bounded heterogeneous materials at finite deformation
    Ma, Juan
    Du, Wenyi
    Gao, Wei
    Wriggers, Peter
    Xue, Xiangdong
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2018, 149 : 15 - 31
  • [24] Extended multiscale finite element method based on polyhedral coarse grid elements for heterogeneous materials and structures
    Lv, Jun
    Song, Chang
    Zheng, Yonggang
    Zhang, Hongwu
    MATERIALS TODAY COMMUNICATIONS, 2020, 24 (24)
  • [25] An ABAQUS toolbox for multiscale finite element computation
    Tchalla, Adjovi
    Belouettar, Salim
    Makradi, Ahmed
    Zahrouni, Hamid
    COMPOSITES PART B-ENGINEERING, 2013, 52 : 323 - 333
  • [26] GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR HIGHLY HETEROGENEOUS COMPRESSIBLE FLOW
    Fu, Shubin
    Chung, Eric
    Zhao, Lina
    MULTISCALE MODELING & SIMULATION, 2022, 20 (04): : 1437 - 1467
  • [27] HETEROGENEOUS MULTISCALE FINITE ELEMENT METHOD WITH NOVEL NUMERICAL INTEGRATION SCHEMES
    Du, Rui
    Ming, Pingbing
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (04) : 863 - 885
  • [28] Generalized Multiscale Finite Element Method for piezoelectric problem in heterogeneous media
    Ammosov, Dmitry
    Vasilyeva, Maria
    Nasedkin, Andrey
    Efendiev, Yalchin
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 135 : 12 - 25
  • [29] Generalized Multiscale Finite Element Method for scattering problem in heterogeneous media
    Kalachikova, Uygulaana
    Vasilyeva, Maria
    Harris, Isaac
    Chung, Eric T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 424
  • [30] A geometric multiscale finite element method for the dynamic analysis of heterogeneous solids
    Casadei, F.
    Rimoli, J. J.
    Ruzzene, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 263 : 56 - 70