共 50 条
Kazhdan-Lusztig conjecture via zastava spaces
被引:0
|作者:
Braverman, Alexander
[1
,2
,3
]
Finkelberg, Michael
[3
,4
,5
]
Nakajima, Hiraku
[6
,7
]
机构:
[1] Univ Toronto, Dept Math, Waterloo, ON N2L 2Y5, Canada
[2] Univ Toronto, Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Skolkovo Inst Sci & Technol, Bolshoi Bulvar 30,Bld 1, Moscow 121205, Russia
[4] Natl Res Univ Higher Sch Econ, Dept Math, 6 Usacheva St, Moscow 119048, Russia
[5] Inst Informat Transmiss Problems, Bolshoi Karetnyi 19, Moscow 127051, Russia
[6] Univ Tokyo, Kavli Inst Phys & Math Univ WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan
[7] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
来源:
关键词:
KOSZUL DUALITY;
QUIVER VARIETIES;
LOCALIZATION;
CATEGORY;
ALGEBRAS;
MODULES;
D O I:
10.1515/crelle-2022-0013
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We deduce the Kazhdan-Lusztig conjecture on the multiplicities of simple modules over a simple complex Lie algebra in Verma modules in category O from the equivariant geometric Satake correspondence and the analysis of torus fixed points in zastava spaces. We make similar speculations for the affine Lie algebras and W-algebras.
引用
收藏
页码:45 / 78
页数:34
相关论文