Kazhdan-Lusztig conjecture via zastava spaces

被引:0
|
作者
Braverman, Alexander [1 ,2 ,3 ]
Finkelberg, Michael [3 ,4 ,5 ]
Nakajima, Hiraku [6 ,7 ]
机构
[1] Univ Toronto, Dept Math, Waterloo, ON N2L 2Y5, Canada
[2] Univ Toronto, Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Skolkovo Inst Sci & Technol, Bolshoi Bulvar 30,Bld 1, Moscow 121205, Russia
[4] Natl Res Univ Higher Sch Econ, Dept Math, 6 Usacheva St, Moscow 119048, Russia
[5] Inst Informat Transmiss Problems, Bolshoi Karetnyi 19, Moscow 127051, Russia
[6] Univ Tokyo, Kavli Inst Phys & Math Univ WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan
[7] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
来源
关键词
KOSZUL DUALITY; QUIVER VARIETIES; LOCALIZATION; CATEGORY; ALGEBRAS; MODULES;
D O I
10.1515/crelle-2022-0013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deduce the Kazhdan-Lusztig conjecture on the multiplicities of simple modules over a simple complex Lie algebra in Verma modules in category O from the equivariant geometric Satake correspondence and the analysis of torus fixed points in zastava spaces. We make similar speculations for the affine Lie algebras and W-algebras.
引用
收藏
页码:45 / 78
页数:34
相关论文
共 50 条