Modeling Active Non-Markovian Oscillations

被引:11
|
作者
Tucci, G. [1 ,2 ]
Roldan, E. [3 ]
Gambassi, A. [1 ,2 ]
Belousov, R. [3 ,4 ]
Berger, F. [5 ]
Alonso, R. G. [6 ,7 ]
Hudspeth, A. J. [6 ,7 ]
机构
[1] SISSA Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Via Bonomea 265, I-34136 Trieste, Italy
[3] ICTP Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[4] EMBL European Mol Biol Lab, Meyerhofstr 1, D-69117 Heidelberg, Germany
[5] Univ Utrecht, Fac Sci, Cell Biol Neurobiol & Biophys, Dept Biol, NL-3584 CH Utrecht, Netherlands
[6] Rockefeller Univ, Howard Hughes Med Inst, 1230 York Ave, New York, NY 10065 USA
[7] Rockefeller Univ, Lab Sensory Neurosci, 1230 York Ave, New York, NY 10065 USA
关键词
HAIR-CELLS; TELEGRAPH NOISE; TRANSDUCTION; ADAPTATION; DYNAMICS;
D O I
10.1103/PhysRevLett.129.030603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Modeling noisy oscillations of active systems is one of the current challenges in physics and biology. Because the physical mechanisms of such processes are often difficult to identify, we propose a linear stochastic model driven by a non-Markovian bistable noise that is capable of generating self-sustained periodic oscillation. We derive analytical predictions for most relevant dynamical and thermodynamic properties of the model. This minimal model turns out to describe accurately bistablelike oscillatory motion of hair bundles in bullfrog sacculus, extracted from experimental data. Based on and in agreement with these data, we estimate the power required to sustain such active oscillations to be of the order of 100 kBT per oscillation cycle.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] ON NON-MARKOVIAN QUANTUM EVOLUTION
    Chruscinski, Dariusz
    Kossakowski, Andrzej
    [J]. QUANTUM BIO-INFORMATICS V, 2013, 30 : 117 - 125
  • [42] A unifying semantics for active databases using non-Markovian theories of actions
    Kiringa, I
    Reiter, R
    [J]. DATABASE PROGRAMMING LANGUAGES, 2004, 2921 : 110 - 129
  • [43] SIMULATION OF NON-MARKOVIAN SYSTEMS
    IGLEHART, DL
    SHEDLER, GS
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1983, 27 (05) : 472 - 480
  • [44] Non-Markovian Quantum Probes
    Haikka, P.
    Maniscalco, S.
    [J]. OPEN SYSTEMS & INFORMATION DYNAMICS, 2014, 21 (1-2):
  • [45] NON-MARKOVIAN MACROSCOPIC DYNAMICS
    GROSSMANN, S
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1982, 47 (03): : 251 - 263
  • [46] Non-Markovian dynamics with fermions
    Sargsyan, V. V.
    Adamian, G. G.
    Antonenko, N. V.
    Lacroix, D.
    [J]. PHYSICAL REVIEW A, 2014, 90 (02):
  • [47] Non-Markovian Boltzmann equation
    Kremp, D
    Bonitz, M
    Kraeft, WD
    Schlanges, M
    [J]. ANNALS OF PHYSICS, 1997, 258 (02) : 320 - 359
  • [48] Pure non-Markovian evolutions
    De Santis, Dario
    [J]. QUANTUM, 2023, 7 : 1 - 19
  • [49] NON-MARKOVIAN RESONANCE FLUORESCENCE
    WODKIEWICZ, K
    [J]. PHYSICS LETTERS A, 1979, 73 (02) : 94 - 96
  • [50] Markovian Embeddings of Non-Markovian Quantum Systems: Coupled Stochastic and Quantum Master Equations for Non-Markovian Quantum Systems
    Nurdin, Hendra I.
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 5939 - 5944