Modeling Active Non-Markovian Oscillations

被引:11
|
作者
Tucci, G. [1 ,2 ]
Roldan, E. [3 ]
Gambassi, A. [1 ,2 ]
Belousov, R. [3 ,4 ]
Berger, F. [5 ]
Alonso, R. G. [6 ,7 ]
Hudspeth, A. J. [6 ,7 ]
机构
[1] SISSA Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Via Bonomea 265, I-34136 Trieste, Italy
[3] ICTP Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[4] EMBL European Mol Biol Lab, Meyerhofstr 1, D-69117 Heidelberg, Germany
[5] Univ Utrecht, Fac Sci, Cell Biol Neurobiol & Biophys, Dept Biol, NL-3584 CH Utrecht, Netherlands
[6] Rockefeller Univ, Howard Hughes Med Inst, 1230 York Ave, New York, NY 10065 USA
[7] Rockefeller Univ, Lab Sensory Neurosci, 1230 York Ave, New York, NY 10065 USA
关键词
HAIR-CELLS; TELEGRAPH NOISE; TRANSDUCTION; ADAPTATION; DYNAMICS;
D O I
10.1103/PhysRevLett.129.030603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Modeling noisy oscillations of active systems is one of the current challenges in physics and biology. Because the physical mechanisms of such processes are often difficult to identify, we propose a linear stochastic model driven by a non-Markovian bistable noise that is capable of generating self-sustained periodic oscillation. We derive analytical predictions for most relevant dynamical and thermodynamic properties of the model. This minimal model turns out to describe accurately bistablelike oscillatory motion of hair bundles in bullfrog sacculus, extracted from experimental data. Based on and in agreement with these data, we estimate the power required to sustain such active oscillations to be of the order of 100 kBT per oscillation cycle.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Non-Markovian evolution approach to structural modeling of material fracture
    Lepov, V. V.
    Loginov, A. B.
    [J]. WORLD JOURNAL OF ENGINEERING, 2012, 9 (03) : 207 - 212
  • [22] From Markovian to non-Markovian persistence exponents
    Randon-Furling, J.
    [J]. EPL, 2015, 109 (04)
  • [23] Comb Model: Non-Markovian versus Markovian
    Iomin, Alexander
    Mendez, Vicenc
    Horsthemke, Werner
    [J]. FRACTAL AND FRACTIONAL, 2019, 3 (04) : 1 - 13
  • [24] A modeling framework to implement preemption policies in non-Markovian SPNs
    Bobbio, A
    Puliafito, A
    Tekel, M
    [J]. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2000, 26 (01) : 36 - 54
  • [25] Non-Markovian dynamics of a qubit in a reservoir: different solutions of non-Markovian master equation
    Ding Bang-Fu
    Wang Xiao-Yun
    Tang Yan-Fang
    Mi Xian-Wu
    Zhao He-Ping
    [J]. CHINESE PHYSICS B, 2011, 20 (06)
  • [26] Different indicators for Markovian and non-Markovian dynamics
    El Anouz, K.
    El Allati, A.
    Metwally, N.
    [J]. PHYSICS LETTERS A, 2020, 384 (05)
  • [27] Markovian semigroup from non-Markovian evolutions
    Wudarski, Filip A.
    Chruscinski, Dariusz
    [J]. PHYSICAL REVIEW A, 2016, 93 (04)
  • [28] Non-Markovian dynamics of a qubit in a reservoir: different solutions of non-Markovian master equation
    丁邦福
    王小云
    唐艳芳
    米贤武
    赵鹤平
    [J]. Chinese Physics B, 2011, 20 (06) : 29 - 33
  • [29] QUANTUM TRANSPORT IN THE MARKOVIAN AND NON-MARKOVIAN ENVIRONMENT
    Xie, Dong
    Wang, An Min
    [J]. MODERN PHYSICS LETTERS B, 2013, 27 (18):
  • [30] Non-Markovian stochastic processes
    Gillespie, DT
    [J]. UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS, 2000, 511 : 49 - 56