Non-Intrusive Appliance Load Monitoring using Genetic Algorithms

被引:5
|
作者
Hock, D. [1 ]
Kappes, M. [1 ]
Ghita, B. [2 ]
机构
[1] Frankfurt Univ Appl Sci, Nibelungenpl 1, D-60318 Frankfurt, Germany
[2] Plymouth Univ, Plymouth PL4 8AA, Devon, England
关键词
D O I
10.1088/1757-899X/366/1/012003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Smart Meters provide detailed energy consumption data and rich contextual information which can be utilized to assist energy providers and consumers in understanding and managing energy use. Here, we present a novel approach using genetic algorithms to infer appliance level data from aggregate load curves without a-priori information. We introduce a theoretical framework to encode load data in a chromosomal representation, to reconstruct individual appliance loads and propose several fitness functions for the evaluation. Our results, using artificial and real world data, confirm the practical relevance and feasibility of our approach.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A Survey on the Non-intrusive Load Monitoring
    Deng, Xiao-Ping
    Zhang, Gui-Qing
    Wei, Qing-Lai
    Peng, Wei
    Li, Cheng-Dong
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (03): : 644 - 663
  • [42] Low-Complexity Non-Intrusive Load Monitoring Using Unsupervised Learning and Generalized Appliance Models
    Liu, Qi
    Kamoto, Kondwani Michael
    Liu, Xiaodong
    Sun, Mingxu
    Linge, Nigel
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2019, 65 (01) : 28 - 37
  • [43] Non-intrusive load monitoring for appliance status determination using feed-forward neural network
    Mohd Fazzil, Nurul Afiqah
    Ibrahim, Ahmad Asrul
    Shareef, Hussain
    Zulkifley, Mohd Asyraf
    Remli, Muhammad Akmal
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2022, 98 (04): : 27 - 32
  • [44] Towards Applicability: A Comparative Study on Non-Intrusive Load Monitoring Algorithms
    Ren, Huamin
    Bianchi, Filippo Maria
    Li, Jingyue
    Olsen, Rasmus L.
    Jenssen, Robert
    Anfinsen, Stian Normann
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2021,
  • [45] Competitive Autoassociative Neural Networks for Electrical Appliance Identification for Non-Intrusive Load Monitoring
    Morais, Lorena R.
    Castro, Adriana R. G.
    [J]. IEEE ACCESS, 2019, 7 : 111746 - 111755
  • [46] Life Pattern Sensor with Non-intrusive Appliance Monitoring
    Katsukura, Makoto
    Nakata, Masanori
    Itou, Yoshiaki
    Kushiro, Noriyuki
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, 2009, : 195 - 196
  • [47] A Scenario-Based Stochastic Optimization Approach for Non-Intrusive Appliance Load Monitoring
    Shahroz, Muhammad
    Younis, Muhammad Shahzad
    Nasir, Hasan Arshad
    [J]. IEEE ACCESS, 2020, 8 : 142205 - 142217
  • [48] Non-intrusive Appliance Load Monitoring Based on Multi-Source Feature Quantity
    Fang, Jicheng
    Huang, Li
    [J]. 2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 1497 - 1502
  • [49] Can non-intrusive load monitoring be used for identifying an appliance's anomalous behaviour?
    Rashid, Haroon
    Singh, Pushpendra
    Stankovic, Vladimir
    Stankovic, Lina
    [J]. APPLIED ENERGY, 2019, 238 : 796 - 805
  • [50] Self-Supervised Feature Learning for Appliance Recognition in Non-Intrusive Load Monitoring
    Liu, Yinyan
    Bai, Lei
    Ma, Jin
    Wang, Wei
    Ouyang, Wanli
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (02) : 1698 - 1710