Non-Intrusive Appliance Load Monitoring using Genetic Algorithms

被引:5
|
作者
Hock, D. [1 ]
Kappes, M. [1 ]
Ghita, B. [2 ]
机构
[1] Frankfurt Univ Appl Sci, Nibelungenpl 1, D-60318 Frankfurt, Germany
[2] Plymouth Univ, Plymouth PL4 8AA, Devon, England
关键词
D O I
10.1088/1757-899X/366/1/012003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Smart Meters provide detailed energy consumption data and rich contextual information which can be utilized to assist energy providers and consumers in understanding and managing energy use. Here, we present a novel approach using genetic algorithms to infer appliance level data from aggregate load curves without a-priori information. We introduce a theoretical framework to encode load data in a chromosomal representation, to reconstruct individual appliance loads and propose several fitness functions for the evaluation. Our results, using artificial and real world data, confirm the practical relevance and feasibility of our approach.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Appliance Water Disaggregation via Non-intrusive Load Monitoring (NILM)
    Ellert, Bradley
    Makonin, Stephen
    Popowich, Fred
    [J]. SMART CITY 360, 2016, 166 : 455 - 467
  • [22] Load Profile Modeling Using High-Frequency Appliance Measurements for Non-intrusive Load Monitoring
    Maier, Matthias
    Bremer, Matthias
    Schramm, Simon
    [J]. 2020 8TH IEEE INTERNATIONAL CONFERENCE ON SMART ENERGY GRID ENGINEERING (SEGE 2020), 2020, : 1 - 7
  • [23] Non-Intrusive Load Monitoring
    Fortuna, Luigi
    Buscarino, Arturo
    [J]. SENSORS, 2022, 22 (17)
  • [24] Admittance-based load signature construction for non-intrusive appliance load monitoring
    Liu, Yanchi
    Wang, Xue
    Zhao, Lin
    Liu, Youda
    [J]. ENERGY AND BUILDINGS, 2018, 171 : 209 - 219
  • [25] Non-Intrusive Residential Load Monitoring System Using Appliance: Based Energy Disaggregation Models
    Devie Paramasivam Mohan
    Kalyani Sundaram
    [J]. Journal of Electrical Engineering & Technology, 2023, 18 : 3783 - 3798
  • [26] Comparative Study of Event Detection Methods for Non-intrusive Appliance Load Monitoring
    Yang, Chuan Choong
    Soh, Chit Siang
    Yap, Vooi Voon
    [J]. INTERNATIONAL CONFERENCE ON APPLIED ENERGY, ICAE2014, 2014, 61 : 1840 - 1843
  • [27] Multilabel Appliance Classification With Weakly Labeled Data for Non-Intrusive Load Monitoring
    Tanoni, Giulia
    Principi, Emanuele
    Squartini, Stefano
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (01) : 440 - 452
  • [28] Multi-label LSTM autoencoder for non-intrusive appliance load monitoring
    Verma, Sagar
    Singh, Shikha
    Majumdar, Angshul
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2021, 199
  • [29] Non-intrusive appliance load monitoring using low-resolution smart meter data
    Liao, Jing
    Elafoudi, Georgia
    Stankovic, Lina
    Stankovic, Vladimir
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2014, : 535 - 540
  • [30] Uncertainty quantification for appliance recognition in non-intrusive load monitoring using Bayesian deep learning
    Werthen-Brabants, Lorin
    Dhaene, Tom
    Deschrijver, Dirk
    [J]. ENERGY AND BUILDINGS, 2022, 270