Non-Intrusive Appliance Load Monitoring using Genetic Algorithms

被引:5
|
作者
Hock, D. [1 ]
Kappes, M. [1 ]
Ghita, B. [2 ]
机构
[1] Frankfurt Univ Appl Sci, Nibelungenpl 1, D-60318 Frankfurt, Germany
[2] Plymouth Univ, Plymouth PL4 8AA, Devon, England
关键词
D O I
10.1088/1757-899X/366/1/012003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Smart Meters provide detailed energy consumption data and rich contextual information which can be utilized to assist energy providers and consumers in understanding and managing energy use. Here, we present a novel approach using genetic algorithms to infer appliance level data from aggregate load curves without a-priori information. We introduce a theoretical framework to encode load data in a chromosomal representation, to reconstruct individual appliance loads and propose several fitness functions for the evaluation. Our results, using artificial and real world data, confirm the practical relevance and feasibility of our approach.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Review of Non-intrusive Load Appliance Monitoring
    Dan, Wang
    Li, Huang Xiao
    Ce, Ye Shu
    [J]. PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 18 - 23
  • [2] Detecting the novel appliance in non-intrusive load monitoring
    Guo, Xiaochao
    Wang, Chao
    Wu, Tao
    Li, Ruiheng
    Zhu, Houyi
    Zhang, Huaiqing
    [J]. APPLIED ENERGY, 2023, 343
  • [3] Automatic Appliance Classification for Non-Intrusive Load Monitoring
    Chou, Po-An
    Chuang, Chi-Cheng
    Chang, Ray-I
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2012,
  • [4] Non-intrusive appliance load monitoring with bagging classifiers
    Kramer, Oliver
    Klingenberg, Thole
    Sonnenschein, Michael
    Wilken, Olaf
    [J]. LOGIC JOURNAL OF THE IGPL, 2015, 23 (03) : 359 - 368
  • [5] EVALUATION OF NON-INTRUSIVE LOAD MONITORING ALGORITHMS FOR APPLIANCE-LEVEL ANOMALY DETECTION
    Rashid, Haroon
    Stankovic, Vladimir
    Stankovic, Lina
    Singh, Pushpendra
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8325 - 8329
  • [6] An unsupervised training method for non-intrusive appliance load monitoring
    Parson, Oliver
    Ghosh, Siddhartha
    Weal, Mark
    Rogers, Alex
    [J]. ARTIFICIAL INTELLIGENCE, 2014, 217 : 1 - 19
  • [7] Non-Intrusive Appliance Load Monitoring and Identification for Smart Home
    Hui, L. Yu
    Logenthiran, T.
    Woo, W. L.
    [J]. 2016 IEEE 6TH INTERNATIONAL CONFERENCE ON POWER SYSTEMS (ICPS), 2016,
  • [8] Incorporating Appliance Usage Patterns for Non-Intrusive Load Monitoring and Load Forecasting
    Welikala, Shirantha
    Dinesh, Chinthaka
    Ekanayake, Mervyn Parakrama B.
    Godaliyadda, Roshan Indika
    Ekanayake, Janaka
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (01) : 448 - 461
  • [9] Energy consumption prediction of a smart home using non-intrusive appliance load monitoring
    Lazhar Chabane
    Said Drid
    Larbi Chrifi-Alaoui
    Laurant Delahoche
    [J]. International Journal of System Assurance Engineering and Management, 2024, 15 : 1231 - 1244
  • [10] Non-Intrusive Appliance Load Monitoring in an Intelligent Device at the Edge layer
    Alonso Aguirre-Nunez, Jose
    Pablo Serrano-Rubio, Juan
    Herrera-Guzman, Rafael
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,