Representations of quiver Hecke algebras via Lyndon bases

被引:17
|
作者
Hill, David [1 ]
Melvin, George [2 ]
Mondragon, Damien [2 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
QUANTUM GROUPS;
D O I
10.1016/j.jpaa.2011.12.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new class of algebras has been introduced by Khovanov and Lauda and independently by Rouquier. These algebras categorify one-half of the Quantum group associated to arbitrary Cartan data. In this paper, we use the combinatorics of Lyndon words to construct the irreducible representations of those algebras associated to Cartan data of finite type. This completes the classification of simple modules for the quiver Hecke algebra initiated by Kleshchev and Ram. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1052 / 1079
页数:28
相关论文
共 50 条
  • [41] Quiver Hecke algebras for Borcherds-Cartan datum
    Tong, Bolun
    Wu, Wan
    JOURNAL OF ALGEBRA, 2023, 630 : 38 - 55
  • [42] ON SOME EMBEDDINGS BETWEEN THE CYCLOTOMIC QUIVER HECKE ALGEBRAS
    Zhou, Kai
    Hu, Jun
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 495 - 511
  • [43] On simple modules of cyclotomic quiver Hecke algebras of type A
    Kerschl, Alexander Ferdinand
    ADVANCES IN MATHEMATICS, 2021, 390
  • [44] Laurent phenomenon and simple modules of quiver Hecke algebras
    Kashiwara, Masaki
    Kim, Myungho
    COMPOSITIO MATHEMATICA, 2019, 155 (12) : 2263 - 2295
  • [45] Quiver algebras and their representations for arbitrary quivers
    Wei Li
    Journal of High Energy Physics, 2024 (12)
  • [46] Algorithms for representations of quiver Yangian algebras
    Galakhov, Dmitry
    Gavshin, Alexei
    Morozov, Alexei
    Tselousov, Nikita
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (08):
  • [47] Injective representations of bound quiver algebras
    Asadollahi, J.
    Hafezi, R.
    Keshavarz, M. H.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (01)
  • [48] Regular elements in bases of Hecke algebras
    Rainbolt, Julianne
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 575 : 87 - 105
  • [49] Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras
    Kang, Seok-Jin
    Kashiwara, Masaki
    Kim, Myungho
    INVENTIONES MATHEMATICAE, 2018, 211 (02) : 591 - 685
  • [50] Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras
    Seok-Jin Kang
    Masaki Kashiwara
    Myungho Kim
    Inventiones mathematicae, 2018, 211 : 591 - 685