A new class of algebras has been introduced by Khovanov and Lauda and independently by Rouquier. These algebras categorify one-half of the Quantum group associated to arbitrary Cartan data. In this paper, we use the combinatorics of Lyndon words to construct the irreducible representations of those algebras associated to Cartan data of finite type. This completes the classification of simple modules for the quiver Hecke algebra initiated by Kleshchev and Ram. (C) 2011 Elsevier B.V. All rights reserved.
机构:
Joeun Math Res Inst, 441 Yeoksam Ro, Seoul 06196, South KoreaJoeun Math Res Inst, 441 Yeoksam Ro, Seoul 06196, South Korea
Kang, Seok-Jin
Kashiwara, Masaki
论文数: 0引用数: 0
h-index: 0
机构:
Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 151747, South KoreaJoeun Math Res Inst, 441 Yeoksam Ro, Seoul 06196, South Korea
Kashiwara, Masaki
Kim, Myungho
论文数: 0引用数: 0
h-index: 0
机构:
Kyung Hee Univ, Dept Math, Seoul 02447, South KoreaJoeun Math Res Inst, 441 Yeoksam Ro, Seoul 06196, South Korea