Laurent phenomenon and simple modules of quiver Hecke algebras

被引:17
|
作者
Kashiwara, Masaki [1 ,2 ]
Kim, Myungho [3 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto, Japan
[2] Korea Inst Adv Study, Seoul 02455, South Korea
[3] Kyung Hee Univ, Dept Math, Seoul 02447, South Korea
基金
日本学术振兴会; 新加坡国家研究基金会;
关键词
cluster algebra; Laurent phenomenon; monoidal categorification; quiver Hecke algebra; unipotent quantum coordinate ring; CLUSTER ALGEBRAS;
D O I
10.1112/S0010437X19007565
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study consequences of the results of Kang et al. [Monoidal categorification of cluster algebras, J. Amer. Math. Soc. 31 (2018), 349{426] on a monoidal categorification of the unipotent quantum coordinate ring Aq(n(w)) together with the Laurent phenomenon of cluster algebras. We show that if a simple module S in the category C-w strongly commutes with all the cluster variables in a cluster [C], then [S] is a cluster monomial in [C]. If S strongly commutes with cluster variables except for exactly one cluster variable [M-k], then [S] is either a cluster monomial in [C] or a cluster monomial in mu(k)([C]). We give a new proof of the fact that the upper global basis is a common triangular basis (in the sense of Qin [Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Math. 166 (2017), 2337{2442]) of the localization (A) over tilde (q) (n(w)) of e A(q) (n(w)) at the frozen variables. A characterization on the commutativity of a simple module S with cluster variables in a cluster [C] is given in terms of the denominator vector of [S] with respect to the cluster [C].
引用
收藏
页码:2263 / 2295
页数:33
相关论文
共 50 条
  • [1] Laurent family of simple modules over quiver Hecke algebras
    Kashiwara, Masaki
    Kim, Myungho
    Oh, Se-jin
    Park, Euiyong
    [J]. COMPOSITIO MATHEMATICA, 2024, 160 (08)
  • [2] On simple modules of cyclotomic quiver Hecke algebras of type A
    Kerschl, Alexander Ferdinand
    [J]. ADVANCES IN MATHEMATICS, 2021, 390
  • [3] Simple modules for quiver Hecke algebras and the Robinson-Schensted-Knuth correspondence
    Gurevich, Maxim
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (02): : 704 - 749
  • [4] Specht Modules for Quiver Hecke Algebras of Type C
    Ariki, Susumu
    Park, Euiyong
    Speyer, Liron
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2019, 55 (03) : 565 - 626
  • [5] On BGG resolutions of unitary modules for quiver Hecke and Cherednik algebras
    Bowman, C.
    Norton, E.
    Simental, J.
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (02):
  • [6] On BGG resolutions of unitary modules for quiver Hecke and Cherednik algebras
    C. Bowman
    E. Norton
    J. Simental
    [J]. Selecta Mathematica, 2022, 28
  • [7] ON THE CENTER OF QUIVER HECKE ALGEBRAS
    Shan, P.
    Varagnolo, M.
    Vasserot, E.
    [J]. DUKE MATHEMATICAL JOURNAL, 2017, 166 (06) : 1005 - 1101
  • [8] Alternating quiver Hecke algebras
    Boys, Clinton
    [J]. JOURNAL OF ALGEBRA, 2016, 449 : 246 - 263
  • [9] Quiver Hecke algebras and categorification
    Brundan, Jonathan
    [J]. ADVANCES IN REPRESENTATION THEORY OF ALGEBRAS, 2013, : 103 - 133
  • [10] Localizations for quiver Hecke algebras
    Kashiwara, Masaki
    Kim, Myungho
    Oh, Se-Jin
    Park, Euiyong
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (04) : 1465 - 1548