MAXIMUM CORRENTROPY CRITERION FOR DISCRIMINATIVE DICTIONARY LEARNING

被引:0
|
作者
Hao, Pengyi [1 ]
Kamata, Sei-ichiro [1 ]
机构
[1] Waseda Univ, Grad Sch Informat Prod & Syst, Tokyo, Japan
关键词
Dictionary learning; Maximum correntropy criterion; Face verification;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In this paper, a novel discriminative dictionary learning with pairwise constraints by maximum correntropy criterion is proposed for pair matching problem. Comparing with the conventional dictionary learning approaches, the proposed method has several advantages: (i) It can deal with the outliers and noises problem more efficiently during the reconstruction step. (ii) It can be effectively solved by half-quadratic optimization algorithm, and in each iteration step, the complex optimization problem can be reduced to a general problem that can be efficiently solved by feature-sign search optimization. (iii) The proposed method is capable of analyzing non-Gaussian noise to reduce the influence of large outliers substantially, resulting in a robust and discriminative dictionary. We test the performance of the proposed method on two applications: face verification on the challenging restricted protocol of Labeled Faces in the Wild (LFW) benchmark and face-track identification on a dataset with more than 7,000 face-tracks. Compared with the recent state-of-the-art approaches, the outstanding performance of the proposed method validates its robustness and discriminability.
引用
收藏
页码:4325 / 4329
页数:5
相关论文
共 50 条
  • [31] Extended Information Filter under Maximum Correntropy Criterion
    Feng, Yuxin
    Feng, Xiaoliang
    Yan, Jingjing
    Zheng, Jian
    2020 35TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2020, : 217 - 220
  • [32] Robust Tensor Factorization Using Maximum Correntropy Criterion
    Zhang, Miaohua
    Gao, Yongsheng
    Sun, Changming
    La Salle, John
    Liang, Junli
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 4184 - 4189
  • [33] Robust Multidimensional Scaling Using a Maximum Correntropy Criterion
    Mandanas, Fotios D.
    Kotropoulos, Constantine L.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (04) : 919 - 932
  • [34] ADAPTIVE CONVEX COMBINATION OF KERNEL MAXIMUM CORRENTROPY CRITERION
    Shi, Long
    Yang, Yunchen
    2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [35] Augmented Maximum Correntropy Criterion for Robust Geometric Perception
    Li, Jiayuan
    Hu, Qingwu
    Liu, Xinyi
    Zhang, Yongjun
    IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 : 4705 - 4724
  • [36] Robust Information Filter Based on Maximum Correntropy Criterion
    Wang, Yidi
    Zheng, Wei
    Sun, Shouming
    Li, Li
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2016, 39 (05) : 1124 - +
  • [37] Extended Kalman Filter under Maximum Correntropy Criterion
    Liu, Xi
    Qu, Hua
    Zhao, Jihong
    Chen, Badong
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1733 - 1737
  • [38] ROBUST PRINCIPAL CURVES BASED ON MAXIMUM CORRENTROPY CRITERION
    Li, Chun-Guo
    Hu, Bao-Gang
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 615 - 620
  • [39] Discriminative Analysis Dictionary Learning
    Guo, Jun
    Guo, Yanqing
    Kong, Xiangwei
    Zhang, Man
    He, Ran
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1617 - 1623
  • [40] Robust Hammerstein Adaptive Filtering under Maximum Correntropy Criterion
    Wu, Zongze
    Peng, Siyuan
    Chen, Badong
    Zhao, Haiquan
    ENTROPY, 2015, 17 (10) : 7149 - 7166