Almost fifth powers in arithmetic progression

被引:3
|
作者
Hajdu, L. [1 ,2 ]
Kovacs, T. [1 ]
机构
[1] Univ Debrecen, Inst Math, H-4012 Debrecen, Hungary
[2] Hungarian Acad Sci, Number Theory Res Grp, Debrecen, Hungary
关键词
Perfect powers; Arithmetic progression; Genus; 2; curves; Chabauty method; TERNARY DIOPHANTINE EQUATIONS; FERMATS LAST THEOREM; CONSECUTIVE INTEGERS; ELLIPTIC-CURVES; PERFECT POWERS; PRODUCTS; TERMS; EXTENSION; EULER;
D O I
10.1016/j.jnt.2011.04.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the product of k consecutive terms of a primitive arithmetic progression is never a perfect fifth power when 3 <= k <= 54. We also provide a more precise statement, concerning the case where the product is an "almost" fifth power. Our theorems yield considerable improvements and extensions, in the fifth power case, of recent results due to Gyory, Hajdu and Pinter. While the earlier results have been proved by classical (mainly algebraic number theoretical) methods, our proofs are based upon a new tool: we apply genus 2 curves and the Chabauty method (both the classical and the elliptic verison). (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1912 / 1923
页数:12
相关论文
共 50 条
  • [31] Powers in arithmetic progressions
    Hajdu, Lajos
    Tengely, Szabolcs
    RAMANUJAN JOURNAL, 2021, 55 (03): : 965 - 986
  • [32] On equal sums of fifth powers
    Choudhry, A
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1997, 28 (11): : 1443 - 1450
  • [33] POWERS OF INTEGERS WITH ARITHMETIC TABLES
    Choi, Eunmi
    Choi, Myungjin
    KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (02): : 191 - 203
  • [34] MODULAR ARITHMETIC OF ITERATED POWERS
    BLAKLEY, GR
    BOROSH, I
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1983, 9 (04) : 567 - 581
  • [35] Full powers in arithmetic progressions
    Pink, I
    Tengely, S
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 57 (3-4): : 535 - 545
  • [36] ALMOST POWERS IN SHORT INTERVALS
    TURK, J
    ARCHIV DER MATHEMATIK, 1984, 43 (02) : 157 - 166
  • [37] No arithmetic progression
    Ginat, David
    ACM Inroads, 2014, 5 (03) : 42 - 43
  • [38] 'ARITHMETIC PROGRESSION'
    ROGERS, J
    MALAHAT REVIEW, 1978, (45): : 52 - 52
  • [39] On the diameter of sets of almost powers
    de Weger, BMM
    van de Woestijne, CE
    ACTA ARITHMETICA, 1999, 90 (04) : 371 - 385
  • [40] POLYNOMIAL VALUES AND ALMOST POWERS
    TURK, J
    MICHIGAN MATHEMATICAL JOURNAL, 1982, 29 (02) : 213 - 220