TEXTURE ANALYSIS VIA HIERARCHICAL SPATIAL-SPECTRAL CORRELATION (HSSC)

被引:0
|
作者
Zhang, Kaitai [1 ]
Chen, Hong-Shuo [3 ]
Wang, Ye
Ji, Xiangyang [2 ]
Kuo, C. -C. Jay [1 ]
机构
[1] Univ Southern Calif, Ming Heish Dept Elect Engn, Los Angeles, CA 90007 USA
[2] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[3] Natl Chiao Tung Univ, Coll Elect & Comp Engn, Hsinchu, Taiwan
基金
国家自然科学基金国际合作与交流项目;
关键词
Texture analysis; texture classification; spatial-spectral transform; spatial-spectral correlation; neural-network-inspired image transform; SEGMENTATION; CLASSIFICATION;
D O I
10.1109/icip.2019.8803556
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
A hierarchical spatial-spectral correlation (HSSC) method is proposed for texture analysis in this work. The HSSC method first applies a multi-stage spatial-spectral transform to input texture patches, which is known as the Saak transform. Then, it conducts a correlation analysis on Saak transform coefficients to obtain texture features of high discriminant power. To demonstrate the effectiveness of the HSSC method, we conduct extensive experiments on texture classification and show that it offers very competitive results comparing with state-of-the-art methods.
引用
收藏
页码:4419 / 4423
页数:5
相关论文
共 50 条
  • [41] Spatial-Spectral ConvNeXt for Hyperspectral Image Classification
    Zhu, Yimin
    Yuan, Kexin
    Zhong, Wenlong
    Xu, Linlin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 (5453-5463) : 5453 - 5463
  • [42] Spatial-Spectral Transformer for Hyperspectral Image Denoising
    Li, Miaoyu
    Fu, Ying
    Zhang, Yulun
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 1368 - 1376
  • [43] Spatial-spectral Compressive Sensing of Hyperspectral Image
    Wang, Zhongliang
    Feng, Yan
    Jia, Yinbiao
    2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2013, : 1256 - 1259
  • [44] SPATIAL-SPECTRAL HYPERSPECTRAL IMAGE COMPRESSIVE SENSING
    Martin, Gabriel
    Bioucas-Dias, Jose M.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3988 - 3991
  • [45] Robust watermarking on the joint spatial-spectral domain
    Al-Khassawneeh, M
    Aviyente, S
    IEEE 11TH DIGITAL SIGNAL PROCESSING WORKSHOP & 2ND IEEE SIGNAL PROCESSING EDUCATION WORKSHOP, 2004, : 297 - 301
  • [46] Spatial-spectral method for classification of hyperspectral images
    Bian, Xiaoyong
    Zhang, Tianxu
    Yan, Luxin
    Zhang, Xiaolong
    Fang, Houzhang
    Liu, Hai
    OPTICS LETTERS, 2013, 38 (06) : 815 - 817
  • [47] Spatial-Spectral Extraction for Hyperspectral Anomaly Detection
    Hu, Jing
    Zhang, Yujing
    Zhao, Minghua
    Li, Peng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [48] Spatial-spectral cube matching frame for spectral CT reconstruction
    Wu, Weiwen
    Zhang, Yanbo
    Wang, Qian
    Liu, Fenglin
    Luo, Fulin
    Yu, Hengyong
    INVERSE PROBLEMS, 2018, 34 (10)
  • [49] HYPERSPECTRAL CLASSIFICATION VIA LOW-RANK COMPONENT INDUCED SPATIAL-SPECTRAL KERNEL
    Sun, Le
    Yan, Fei
    Zhan, Tianming
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3005 - 3008
  • [50] Time delay retrieval via the slope of spatial-spectral interference fringe for short pulses
    Mu, Jie
    Wang, Xiao
    Zuo, Yanlei
    Zhou, Kainan
    Wang, Xiaodong
    Zeng, Xiaoming
    Jiang, Dongbin
    Xie, Na
    Huang, Xiaojun
    Hu, Bilong
    Su, Jingqin
    THIRD INTERNATIONAL CONFERENCE ON PHOTONICS AND OPTICAL ENGINEERING, 2019, 11052