Spatial-spectral method for classification of hyperspectral images

被引:12
|
作者
Bian, Xiaoyong [1 ,2 ]
Zhang, Tianxu [1 ]
Yan, Luxin [1 ]
Zhang, Xiaolong [2 ]
Fang, Houzhang [1 ]
Liu, Hai [1 ]
机构
[1] Huazhong Univ Sci & Technol, Inst Pattern Recognit & Artificial Intelligence, Sci & Technol Multispectral Informat Proc Lab, Wuhan 430074, Hubei, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430081, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1364/OL.38.000815
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spatial-spectral approach with spatially adaptive classification of hyperspectral images is proposed. The rotation-invariant spatial texture information for each object is exploited and incorporated into the classifier by using the modified local Gabor binary pattern to distinguish different types of classes of interest. The proposed method can effectively suppress anisotropic texture in spatially separate classes as well as improve the discrimination among classes. Moreover, it becomes more robust with the within-class variation. Experimental results on the classification of three real hyperspectral remote sensing images demonstrate the effectiveness of the proposed approach. (C) 2013 Optical Society of America
引用
收藏
页码:815 / 817
页数:3
相关论文
共 50 条
  • [1] HGF Spatial-Spectral Fusion Method for Hyperspectral Images
    Fu, Pingjie
    Zhang, Yuxuan
    Meng, Fei
    Zhang, Wei
    Zhang, Banghua
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [2] An efficient spatial-spectral classification method for hyperspectral imagery
    Li, Wei
    Du, Qian
    [J]. SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING X, 2014, 9124
  • [3] Spatial-Spectral Random Patches Network for Classification of Hyperspectral Images
    Beirami, Behnam Asghari
    Mokhtarzade, Mehdi
    [J]. TRAITEMENT DU SIGNAL, 2019, 36 (05) : 399 - 406
  • [4] A multiscale modified minimum spanning forest method for spatial-spectral hyperspectral images classification
    Poorahangaryan, Fereshteh
    Ghassemian, Hassan
    [J]. EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2017,
  • [5] A multiscale modified minimum spanning forest method for spatial-spectral hyperspectral images classification
    Fereshteh Poorahangaryan
    Hassan Ghassemian
    [J]. EURASIP Journal on Image and Video Processing, 2017
  • [6] Classification of sample less hyperspectral images based on spatial-spectral fusion
    Chen, Yingkun
    Wang, Min
    [J]. 2024 5TH INTERNATIONAL CONFERENCE ON GEOLOGY, MAPPING AND REMOTE SENSING, ICGMRS 2024, 2024, : 143 - 146
  • [7] BAYESIAN GAUSSIAN MIXTURE MODEL FOR SPATIAL-SPECTRAL CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Kayabol, Koray
    [J]. 2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1805 - 1809
  • [8] Exploring ELM-based spatial-spectral classification of hyperspectral images
    Heras, Dora B.
    Argueello, Francisco
    Quesada-Barriuso, Pablo
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (02) : 401 - 423
  • [9] Spatial-Spectral ConvNeXt for Hyperspectral Image Classification
    Zhu, Yimin
    Yuan, Kexin
    Zhong, Wenlong
    Xu, Linlin
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 (5453-5463) : 5453 - 5463
  • [10] Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Xin
    Chen, Yushi
    Lin, Zhouhan
    [J]. REMOTE SENSING, 2021, 13 (03) : 1 - 22