Spatial-spectral method for classification of hyperspectral images

被引:12
|
作者
Bian, Xiaoyong [1 ,2 ]
Zhang, Tianxu [1 ]
Yan, Luxin [1 ]
Zhang, Xiaolong [2 ]
Fang, Houzhang [1 ]
Liu, Hai [1 ]
机构
[1] Huazhong Univ Sci & Technol, Inst Pattern Recognit & Artificial Intelligence, Sci & Technol Multispectral Informat Proc Lab, Wuhan 430074, Hubei, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430081, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1364/OL.38.000815
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spatial-spectral approach with spatially adaptive classification of hyperspectral images is proposed. The rotation-invariant spatial texture information for each object is exploited and incorporated into the classifier by using the modified local Gabor binary pattern to distinguish different types of classes of interest. The proposed method can effectively suppress anisotropic texture in spatially separate classes as well as improve the discrimination among classes. Moreover, it becomes more robust with the within-class variation. Experimental results on the classification of three real hyperspectral remote sensing images demonstrate the effectiveness of the proposed approach. (C) 2013 Optical Society of America
引用
收藏
页码:815 / 817
页数:3
相关论文
共 50 条
  • [31] Hyperspectral Rock Classification Method Based on Spatial-Spectral Multidimensional Feature Fusion
    Cao, Shixian
    Wu, Wenyuan
    Wang, Xinyu
    Xie, Shanjuan
    [J]. MINERALS, 2024, 14 (09)
  • [32] A CLASSIFICATION METHOD WITH A SPATIAL-SPECTRAL VARIABILITY
    ARAI, K
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1993, 14 (04) : 699 - 709
  • [33] Spatial Functional Data Analysis for the Spatial-Spectral Classification of Hyperspectral Imagery
    Lv, Meng
    Fowler, James E.
    Jing, Ling
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (06) : 942 - 946
  • [34] Integration of spatial-spectral information for resolution enhancement in hyperspectral images
    Gu, Yanfeng
    Zhang, Ye
    Zhang, Junping
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (05): : 1347 - 1358
  • [35] Capsulenet-Based Spatial-Spectral Classifier for Hyperspectral Images
    Arun, P., V
    Buddhiraju, Krishna Mohan
    Porwal, Alok
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (06) : 1849 - 1865
  • [36] Matrix Cofactorization for Joint Spatial-Spectral Unmixing of Hyperspectral Images
    Lagrange, Adrien
    Fauvel, Mathieu
    May, Stephane
    Dobigeon, Nicolas
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4915 - 4927
  • [37] Spatial-spectral segmentation of hyperspectral images for subpixel target detection
    Liang, Yilong
    Markopoulos, Panos P.
    Saber, Eli
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (03):
  • [38] Spatial-Spectral Local Domain Adaption for Cross Domain Few Shot Hyperspectral Images Classification
    Wang, Biqi
    Xu, Yang
    Wu, Zebin
    Zhan, Tianming
    Wei, Zhihui
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] Joint Spatial-Spectral Attention Network for Hyperspectral Image Classification
    Li, Lei
    Yin, Jihao
    Jia, Xiuping
    Li, Sen
    Han, Bingnan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (10) : 1816 - 1820
  • [40] CLASSIFICATION OF HYPERSPECTRAL IMAGE VIA SPATIAL-SPECTRAL MANIFOLD RECONSTRUCTION
    Yang, Yaqiong
    Huang, Hong
    Luo, Fulin
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2442 - 2445