EXISTENCE, REGULARITY AND WEAK-STRONG UNIQUENESS FOR THREE-DIMENSIONAL PETERLIN VISCOELASTIC MODEL

被引:0
|
作者
Brunk, Aaron [1 ]
Lu, Yong [2 ]
Lukacova-Medvidova, Maria [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany
[2] Nanjing Univ, Dept Math, Nanjing, Peoples R China
关键词
Complex fluids; relative energy; parabolic regularity; weak-strong uniqueness; FINITE-ELEMENT APPROXIMATION; SPRING CHAIN MODELS; GLOBAL EXISTENCE; OLDROYD-B; NUMERICAL-ANALYSIS; DILUTE POLYMERS; FLUID SYSTEM; HYDRODYNAMICS; CRITERIA;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze three-dimensional Peterlin viscoelastic model. By means of a mixed Galerkin and semigroup approach we prove the existence of weak solutions. Further, combining parabolic regularity with the relative energy method, we derive a conditional weak-strong uniqueness result.
引用
收藏
页码:201 / 230
页数:30
相关论文
共 50 条
  • [31] On Weak-Strong Uniqueness for Stochastic Equations of Incompressible Fluid Flow
    Abhishek Chaudhary
    Ujjwal Koley
    Journal of Mathematical Fluid Mechanics, 2022, 24
  • [32] Weak-Strong Uniqueness for Compressible Magnetohydrodynamic Equations with Coulomb Force
    He, Lianhua
    Zhou, Yonghui
    ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [33] Weak-strong uniqueness for energy-reaction-diffusion systems
    Hopf, Katharina
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (05): : 1015 - 1069
  • [34] Weak-strong uniqueness for the Navier-Stokes-Poisson equations
    He, Lianhua
    Tan, Zhong
    APPLIED MATHEMATICS LETTERS, 2020, 103
  • [35] WEAK-STRONG UNIQUENESS OF HYDRODYNAMIC FLOW OF NEMATIC LIQUID CRYSTALS
    Zhao, Ji-hong
    Liu, Qiao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [36] Weak-strong uniqueness for the mean curvature flow of double bubbles
    Hensel, Sebastian
    Laux, Tim
    INTERFACES AND FREE BOUNDARIES, 2023, 25 (01) : 37 - 107
  • [37] Weak-strong uniqueness for the isentropic Euler equations with possible vacuum
    Ghoshal, Shyam Sundar
    Jana, Animesh
    Wiedemann, Emil
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 3 (04):
  • [38] On weak-strong uniqueness property for full compressible magnetohydrodynamics flows
    Yan, Weiping
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (11): : 2005 - 2019
  • [39] Weak-strong uniqueness property for the compressible flow of liquid crystals
    Yang, Yong-Fu
    Dou, Changsheng
    Ju, Qiangchang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (06) : 1233 - 1253
  • [40] ON WEAK-STRONG UNIQUENESS AND SINGULAR LIMIT FOR THE COMPRESSIBLE PRIMITIVE EQUATIONS
    Gao, Hongjun
    Necasova, Sarka
    Tang, Tong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (07) : 4287 - 4305