EXISTENCE, REGULARITY AND WEAK-STRONG UNIQUENESS FOR THREE-DIMENSIONAL PETERLIN VISCOELASTIC MODEL

被引:0
|
作者
Brunk, Aaron [1 ]
Lu, Yong [2 ]
Lukacova-Medvidova, Maria [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany
[2] Nanjing Univ, Dept Math, Nanjing, Peoples R China
关键词
Complex fluids; relative energy; parabolic regularity; weak-strong uniqueness; FINITE-ELEMENT APPROXIMATION; SPRING CHAIN MODELS; GLOBAL EXISTENCE; OLDROYD-B; NUMERICAL-ANALYSIS; DILUTE POLYMERS; FLUID SYSTEM; HYDRODYNAMICS; CRITERIA;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze three-dimensional Peterlin viscoelastic model. By means of a mixed Galerkin and semigroup approach we prove the existence of weak solutions. Further, combining parabolic regularity with the relative energy method, we derive a conditional weak-strong uniqueness result.
引用
收藏
页码:201 / 230
页数:30
相关论文
共 50 条
  • [21] A three-dimensional phase transition model in ferromagnetism: Existence and uniqueness
    Berti, V.
    Fabrizio, M.
    Giorgi, C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (02) : 661 - 674
  • [22] GLOBAL EXISTENCE AND UNIQUENESS OF A THREE-DIMENSIONAL MODEL OF CELLULAR ELECTROPHYSIOLOGY
    Matano, Hiroshi
    Mori, Yoichiro
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (04) : 1573 - 1636
  • [23] Weak-Strong Uniqueness for Measure-Valued Solutions
    Yann Brenier
    Camillo De Lellis
    László Székelyhidi
    Communications in Mathematical Physics, 2011, 305
  • [24] Local existence of strong solutions and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains
    Kreml, Ondrej
    Necasova, Sarka
    Piasecki, Tomasz
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (05) : 2255 - 2300
  • [25] Weak-Strong Uniqueness for Measure-Valued Solutions
    Brenier, Yann
    De Lellis, Camillo
    Szekelyhidi, Laszlo, Jr.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 305 (02) : 351 - 361
  • [26] WEAK-STRONG UNIQUENESS FOR MAXWELL-STEFAN SYSTEMS
    Huo, Xiaokai
    Jungel, Ansgar
    Tzavaras, Athanasios E.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 3215 - 3252
  • [27] GLOBAL EXISTENCE RESULT FOR THE GENERALIZED PETERLIN VISCOELASTIC MODEL
    Lukacova-Medvidova, Maria
    Mizerova, Hana
    Necasova, Sarka
    Renardy, Michael
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (04) : 2950 - 2964
  • [28] Existence and uniqueness of weak solution to a three-dimensional stochastic modified-Leray-alpha model of fluid turbulence
    Selmi, Ridha
    Nasfi, Rim
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2021, 8 (01): : 115 - 137
  • [29] Weak-strong uniqueness for the generalized Navier-Stokes equations
    Wu, Hongwei
    Fan, Jishan
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 423 - 428
  • [30] Weak-strong uniqueness for the isothermal Navier-Stokes equations
    Yao, Lei
    Cui, Haibo
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (11)